#### APPENDIX B SOIL VAPOR SURVEY



Mr. John Carter SAIC 1710 Goodridge Drive McLean, VA 22102

SUBJECT: DATA REPORT - SOIL VAPOR SURVEY - TOOELE ARMY

**DEPOT-SOUTH AREA** 

TEG Project #940919CM

Mr. Carter:

Please find enclosed a data report for the soil vapor survey conducted by TEG at the above referenced site for SAIC. Soil vapor was collected by TEG and analyzed on-site in TEG's DOHS certified mobile laboratory (CERT #1667). TEG personnel analyzed soil vapor from 178 points for:

- volatile aromatic hydrocarbons (BTEX) by EPA 8020
- total petroleum hydrocarbons (TPH) by DOHS Modified EPA Method 8015
- volatile halogenated hydrocarbons by EPA Method 8010

The results of the analyses are summarized in the attached tables. Also enclosed are brief descriptions of TEG's soil vapor procedure and standard chromatograms of the analyses performed on the samples.

TEG appreciates the opportunity to provide analytical services to SAIC for this project. If you have any questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Dr. Blayne Hartman

432 NORTH CEDROS AVENUE SOLANA BEACH, CA 92075 619-793-0401 FAX: 619-793-0404



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | BLANK        | 190105      | 190110       | 190115       | 190120   | 190125   | 190130   | 190135   | 190140   |
|---------------------------|--------------|-------------|--------------|--------------|----------|----------|----------|----------|----------|
| DATE ANALYZED             | 09/19/94     | 09/19/94    | 09/19/94     | 09/19/94     | 09/19/94 | 09/19/94 | 09/19/94 | 09/19/94 | 09/19/94 |
| TIME ANALYZED             | 11:42        | 12:17       | 12:38        | 13:02        | 13:08    | 13:28    | 13:46    | 14:45    | 15:01    |
| DEPTH (feet)              |              | 5           | 10           | 15           | 20       | 25       | 30       | 35       | 40       |
| 1,1 DiCHLORO ETHANE       | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| 1,1 DiCHLORO ETHENE       | nd           | nd          | nd           | 7.3          | 7.4      | 14.9     | 19.9     | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | nd           | 14.8        | 29.9         | >134.9       | >77.8    | >165.0   | >86.5    | nd       | 11.5     |
| L,1,2 TriCHLORO ETHANE    | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| ,2 Cis DiCHLORO ETHENE    | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| ,2 DiCHLORO ETHANE        | nd           | nd          | nd           | · nd         | nd       | nd       | nd       | nd       | ·no      |
| ,2 DiCHLORO PROPANE       | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| ,2 Trans DiCHLORO ETHENE  | nd           | nd          | nd           | nd           | nd       | nd       | nd       | _ nd     | no       |
| ROMO DiCHLORO METHANE     | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| ARBON TetraCHLORIDE       | nd           | 15.1        | 30.6         | >132.2       | >91.1    | >177.2   | >123.7   | nd       | 14.4     |
| HLOROFORM                 | nd           | nd          | nd           | nd           | 1.5      | nd       | 1.7      | nd       | no       |
| is DiCHLORO PROPENE       | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| REON 11                   | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| REON 113                  | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| ETHYLENE CHLORIDE         | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| etraCHLORO ETHANE         | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| etraCHLORO ETHENE         | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| rans DiCHLORO PROPENE     | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| riCHLORO ETHENE           | nd           | 6.0         | 5.9          | 14.5         | 14.3     | 20.3     | 23.9     | nd       | 1.8      |
| 'INYL CHLORIDE            | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | nd       |
| ENZENE                    | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | nd       |
| THYLBENZENE               | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| COLUENE                   | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |
| TOTAL XYLENES             | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTION | LIMIT OF 1. | 0 UG/L FOR E | ACH COMPOUND | <b></b>  |          |          |          |          |
| TPH (PPMV)                | nd           | nd          | nd           | nd           | nd       | nd       | nd       | nd       | no       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667) ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Handman 10-7-94

TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           |              |             | ,            |                                         |          |                     |          |          |
|---------------------------|--------------|-------------|--------------|-----------------------------------------|----------|---------------------|----------|----------|
|                           | 190205       | 190210      | 190215       | 190220                                  | 190225   | 190230              | 190235   | 190240   |
| DATE ANALYZED             | 09/19/94     | 09/19/94    | 09/19/94     | 09/19/94                                | 09/19/94 | 09/19/94            | 09/19/94 | 09/19/94 |
| TIME ANALYZED             | 15:32        | 15:51       | 16:11        | 16:24                                   | 16:38    | 16:50               | 17:09    | 17:23    |
| DEPTH (feet)              | 5            | 10          | 15           | 20                                      | 25       | 30                  | 35       | 40       |
| 1,1 DiCHLORO ETHANE       | nd           | nd          | nđ           | nd                                      | nd       | nd                  | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd           | nd          | nd           | nd                                      | nd       | 13.3                | 17.6     | 8.8      |
| 1,1,1 TriCHLORO ETHANE    | 7.2          | 11.4        | 18.1         | nd                                      | 2.9      | >157.42             | >88.71   | >123.0   |
| 1,1,2 TriCHLORO ETHANE    | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| 1,2 Trans DiCHLORO ETHENE | nd           | nd          | nd.          | nd                                      | nd       | nd                  | nd       | nd.      |
| BROMO DICHLORO METHANE    | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| CARBON TetraCHLORIDE      | 10.1         | 16.0        | 19.3         | 2.9                                     | 4.8      | >159.59             | >108.7   | >116.8   |
| CHLOROFORM                | nd           | nd          | nd           | nd                                      | nd       | 2.7                 | 4.2      | nd       |
| Cis DiCHLORO PROPENE      | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| FREON 11                  | nd           | nd          | nd           | nđ                                      | nd       | nd                  | nd       | nd       |
| FREON 113                 | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| METHYLENE CHLORIDE        | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| TetraCHLORO ETHANE        | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| TetraCHLORO ETHENE        | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| TriCHLORO ETHENE          | nd           | nd          | nd           | nd                                      | nd       | 3.5                 | 2.4      | nd       |
| VINYL CHLORIDE            | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| BENZENE                   | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| ETHYLBENZENE              | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| TOLUENE                   | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| TOTAL XYLENES             | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTION | LIMIT OF 1. | 0 UG/L FOR E | EACH COMPOUND                           | )        |                     |          |          |
| TPH (PPMV)                | nd           | nd          | nd           | nd                                      | nd       | nd                  | nd       | nd       |
|                           |              |             |              | • • • • • • • • • • • • • • • • • • • • |          | . – – – – – – – – – |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dlagne Hartman 10-7-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| ======================================= | BLANK        | 190305      | 190305 dup    | 190310      | 190315   | 190320   | 190320 dup | 190325   | 190330   | 190335   | 190345   |
|-----------------------------------------|--------------|-------------|---------------|-------------|----------|----------|------------|----------|----------|----------|----------|
| DATE ANALYZED                           | 09/20/94     | 09/20/94    | 09/20/94      | 09/20/94    | 09/20/94 | 09/20/94 | 09/20/94   | 09/20/94 | 09/20/94 | 09/20/94 | 09/20/94 |
| TIME ANALYZED                           | 08:04        | 08:29       | 09:09         | 09:41       | 10:15    | 10:40    | 11:04      | 11:46    | 12:10    | 12:23    | 13:00    |
| DEPTH (feet)                            |              | 5           | 5             | 10          | 15       | 20       | 20         | 25       | 30       | 35       | 45       |
| 1,1 DiCHLORO ETHANE                     | nd           | nd          | nd            | nd.         | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE                     | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETH                     | nd           | 22.0        | 2.4           | 7.5         | nd       | nd       | nd         | 80.0     | 206.0    | 117.7    | 62.4     |
| 1,1,2 TriCHLORO ETH                     | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ET                     | nd           | nd          | · nd          | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE                     | nd           | nd          | · nd          | nd          | nd       | nd       | nd         | ·nd      | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPAN                     | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO                      | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METH                     | nd           | nd          | nd            | nd          | nd       | nd       | . nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORID                     | nd           | 25.9        | 30.0          | 26.4        | 9.9      | 3.3      | 3.3        | 120.0    | 264.0    | 184.8    | 109.1    |
| CHLOROFORM                              | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPEN                     | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| FREON 11                                | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| FREON 113                               | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE                      | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE                      | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE                      | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROP                     | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE                        | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE                          | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| BENZENE                                 | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| ETHYLBENZENE                            | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| TOLUENE                                 | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| TOTAL XYLENES                           | nd           | nd          | nd            | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DET                    | ECTED AT DET | ECTION LIMI | T OF 1.0 UG/1 | FOR EACH CO | )MPOUND  | •        | ·          |          |          |          |          |
| TPH (PPMV)                              | nd           | 12.8        | 9.9           | nd          | nd       | nd       | nd         | nd       | nd       | nd       | nd       |
|                                         |              |             |               |             |          |          |            |          |          |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blayne Harburan 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                       | 190350      | 190405       | 190410      | 190415      | 190420   | 190420 dup | 190425   | 190430   | 190440   | 190445   | 190450   |
|-----------------------|-------------|--------------|-------------|-------------|----------|------------|----------|----------|----------|----------|----------|
| DATE ANALYZED         | 09/20/94    | 09/20/94     | 09/20/94    | 09/20/94    | 09/20/94 | 09/20/94   | 09/20/94 | 09/20/94 | 09/20/94 | 09/20/94 | 09/20/94 |
| TIME ANALYZED         | 13:16       | 13:47        | 13:54       | 14:10       | 14:20    | 14:33      | 15:08    | 15:16    | 15:41    | 15:57    | 16:11    |
| DEPTH (feet)          | 50          | 5            | 10          | 15          | 20       | 20         | 25       | 30       | 40       | 45       | 50       |
| 1,1 DiCHLORO ETHANE   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE   | 33.9        | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETH   | 285.1       | nd           | 3.1         | 53.2        | 7.7      | 5.3        | 55.7     | 87.5     | 3.0      | 6.5      | 3.4      |
| 1,1,2 TriCHLORO ETH   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ET   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE   | nd          | · nd         | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPAN   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO    | nd          | nd           | nd          | nd          | nd       | nd         | nd       | · nd     | nd       | nd       | nd       |
| BROMO DICHLORO METH   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORID   | 427.8       | 1.3          | 20.7        | 103.3       | 25.4     | 20.4       | 114.7    | 166.3    | 22.7     | 23.2     | 17.6     |
| CHLOROFORM            | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPEN   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| FREON 11              | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nđ       | nd       | nd       | nd       |
| FREON 113             | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE    | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE    | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE    | nd          | nd           | nd          | nd          | nd       | nd         | nd       | ndi      | nd       | nd       | nd       |
| Trans DiCHLORO PROP   | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| TrichLoro ETHENE      | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE        | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| BENZENE               | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE          | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| TOLUENE               | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES         | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETE | CTED AT DET | ECTION LIMIT | OF 1.0 UG/L | FOR EACH CO | OMPOUND  |            |          |          |          |          |          |
| TPH (PPMV)            | nd          | nd           | nd          | nd          | nd       | nd         | nd       | nd       | nd       | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dayne Hartman 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| 3F7F55555555555555555555555555555555555 |                                                                            | *======== |          |          |          |          |            |               |          |          |          |          |
|-----------------------------------------|----------------------------------------------------------------------------|-----------|----------|----------|----------|----------|------------|---------------|----------|----------|----------|----------|
|                                         | BLANK                                                                      | 190505    | 190510   | 190515   | 190520   | 190525   | 190525 dup | 190605        | 190610   | 190615   | 190620   | 190625   |
| DATE ANALYZED                           | 09/21/94                                                                   | 09/21/94  | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94   | 09/21/94      | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 |
| TIME ANALYZED                           | 07:01                                                                      | 07:27     | 07:37    | 07:49    | 08:07    | 08:17    | 08:29      | 09:21         | 09:30    | 09:45    | 09:54    | 10:06    |
| DEPTH (feet)                            |                                                                            | 5         | 10       | 15       | 20       | 25       | 25         | 5             | 10       | 15       | 20       | 25       |
| 1,1 DiCHLORO ETHANE                     | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE                     | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE                  | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | 2.5      | 22.3     | 31.3     |
| 1,1,2 TriCHLORO ETHANE                  | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | $\mathbf{nd}$ | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE                 | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE                     | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | · nd     | nd       |
| 1,2 DiCHLORO PROPANE                    | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN                | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | . nd     | nd       | nd       | nd       |
| BROMO DiCHLORO METHANE                  | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE                    | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | 2.4           | 14.8     | 12.0     | 46.0     | 75.4     |
| CHLOROFORM                              | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE                    | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nđ       | nd       |
| FREON 11                                | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| FREON 113                               | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE                      | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE                      | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE                      | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE                  | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE                        | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE                          | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| BENZENE                                 | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| ETHYLBENZENE                            | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nđ       | nd       | nd       | nd       |
| TOLUENE                                 | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| TOTAL XYLENES                           | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED               | ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 UG/L FOR EACH COMPOUND |           |          |          |          |          |            |               |          |          |          |          |
| TPH (PPMV)                              | nd                                                                         | nd        | nd       | nd       | nd       | nd       | nd         | nd            | nd       | nd       | nd       | nd       |
|                                         |                                                                            |           |          |          |          |          | ·          |               |          |          |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Hardman 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                                                                            | 190630   | 190635   | 190640   | 190705   | 190710   | 190715   | 190715 dup | 190720   | 190725   | 190730        | 190740   | 190805   |
|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|---------------|----------|----------|
| DATE ANALYZED                                                              | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94   | 09/21/94 | 09/21/94 | 09/21/94      | 09/21/94 | 09/21/94 |
| TIME ANALYZED                                                              | 10:20    | 10:42    | 11:01    | 11:27    | 11:35    | 11:51    | 11:58      | 12:17    | 12:31    | 12:42         | 13:08    | 13:38    |
| DEPTH (feet)                                                               | 30       | 35       | 40       | 5        | 10       | 15       | 15         | 20       | 25       | 30            | 40       | 5        |
| 1,1 DiCHLORO BTHANE                                                        | nd         | nd       | nd       | nd            | nd       | nd       |
| 1,1 DiCHLORO ETHENE                                                        | nd         | nd       | nd       | nd            | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE                                                     | 38.6     | nd       | 4.1      | nd       | nd       | nd       | nd         | nd       | nd       | $\mathbf{nd}$ | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE                                                     | nd         | nd       | nd       | nd            | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE                                                    | nd         | nd       | nd       | nd            | nd       | nd       |
| 1,2 DiCHLORO ETHANE                                                        | nd       | nd       | nd       | nd       | · nd     | nd       | nd         | nd       | nd       | ·nd           | nd       | nd       |
| 1,2 DiCHLORO PROPANE                                                       | nd         | nd       | nd       | nd            | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN                                                   | nd         | nd       | nd       | nd            | nd       | nd       |
| BROMO DiCHLORO METHANE                                                     | nd         | nd       | nd       | nd            | nd       | nd       |
| CARBON TetraCHLORIDE                                                       | 81.2     | nd       | 19.1     | nd       | 8.5      | 4.2      | 6.9        | 2.9      | nd       | nd            | nd       | 4.6      |
| CHLOROFORM                                                                 | nd         | nd       | nd       | nd            | nd       | nd       |
| Cis DiCHLORO PROPENE                                                       | nd         | nd       | nd       | nd            | nd       | nd       |
| FREON 11                                                                   | nd         | nd       | nd       | nd            | nd       | nd       |
| FREON 113                                                                  | nd         | nd       | nd       | nd            | nd       | nd       |
| METHYLENE CHLORIDE                                                         | nd         | nd       | nd       | nd            | nd       | nd       |
| TetraCHLORO ETHANE                                                         | nd         | nd       | nd       | nd            | nd       | nd       |
| TetraCHLORO ETHENE                                                         | nd         | nd       | nd       | nd            | nd       | nd       |
| Trans DiCHLORO PROPENE                                                     | nd         | nd       | nd       | nd            | nd       | nd       |
| TriCHLORO ETHENE                                                           | nd         | nd       | nd       | nd            | nd       | 41.3     |
| VINYL CHLORIDE                                                             | nd         | nd       | nd       | nd            | nd       | nd       |
| BENZENE                                                                    | nd         | nd       | nd       | nd            | nd       | nd       |
| ETHYLBENZENE                                                               | nd         | nd       | nd       | nd            | nd       | nd       |
| TOLUENE                                                                    | nd         | nd       | nd       | nd            | nd       | nd       |
| TOTAL XYLENES                                                              | nd       | nd       | · nd     | nd       | nd       | nd       | nd         | nd       | nd       | nd            | nd       | nd       |
| ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 UG/L FOR EACH COMPOUND |          |          |          |          |          |          |            |          |          |               |          |          |
| TPH (PPMV)                                                                 | nd         | nd       | nd       | nd            | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

**\*\*\*** 

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blayne Harbman



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           |              |              |            | ========    | ********* |            |          |          |          |          |          |          |
|---------------------------|--------------|--------------|------------|-------------|-----------|------------|----------|----------|----------|----------|----------|----------|
|                           | 190810       | 190815       | 190820     | 190825      | 190830    | 190830 dup | 190835   | 190905   | 190910   | 190915   | 190920   | 190925   |
| DATE ANALYZED             | 09/21/94     | 09/21/94     | 09/21/94   | 09/21/94    | 09/21/94  | 09/21/94   | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 | 09/21/94 |
| TIME ANALYZED             | 13:48        | 14:02        | 14:16      | 14:23       | 14:40     | 14:49      | 15:13    | 15:58    | 16:19    | 16:27    | 16:42    | 16:50    |
| DEPTH (feet)              | 10           | 15           | 20         | 25          | 30        | 30         | 35       | 5        | 10       | 15       | 20       | 25       |
| 1,1 DiCHLORO ETHANE       | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | 5.3          | 4.9          | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE    | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd           | nd           | nd         | nd          | · nd      | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nđ           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE    | nd           | nd           | · nd       | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE      | 14.8         | 17.8         | 9.4        | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| CHLOROFORM                | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 11                  | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 113                 | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE        | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE        | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE        | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE          | 31.1         | 49.6         | 22.4       | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE            | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| BENZENE                   | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE              | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| TOLUENE                   | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES             | nd           | nd           | nd         | nd          | nd        | nd         | nd       | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTION | N LIMIT OF 1 | 0 UG/L FOR | EACH COMPOU | 4D        |            |          |          |          |          |          |          |
| TPH (PPMV)                | nd           | nd           | nd         | nd          | nd        | nd         | 7.1      | nd       | nd       | nd       | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dlagne Harbman 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| 3                         | BLANK        | 191005       | 191010      | 191015      | 191015 dup | 191020   | 191025   | 191030   | 191035   | 191040   | 191105   | 191110   |
|---------------------------|--------------|--------------|-------------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|
| DATE ANALYZED             | 09/22/94     | 09/22/94     | 09/22/94    | 09/22/94    | 09/22/94   | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 |
| TIME ANALYZED             | 06:58        | 07:28        | 07:38       | 07:51       | 08:07      | 08:14    | 08:27    | 08:39    | 08:53    | 09:07    | V9:43    | 10:05    |
| DEPTH (feet)              |              | 5            | 10          | 15          | 15         | 20       | 25       | 30       | 35       | 40       | 5        | 10       |
| 1,1 DiCHLORO ETHANE       | nd           | nđ           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | 17.2     | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | nd           | 1.6          | 19.7        | nd          | nd         | 4.1      | 56.0     | 114.0    | 89.3     | 145.7    | nd       | 11.8     |
| 1,1,2 TriCHLORO ETHANE    | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd           | nd           | nd·         | nd          | nd         | nd       | nd       | nd       | · nd     | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nd           | . nd         | nd          | nd          | nd         | nd       | . nd     | nd       | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE    | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE      | nd           | 5.9          | 27.6        | 3.5         | 3.1        | 16.8     | 89.3     | 162.2    | 132.8    | 208.2    | 3.1      | 29.0     |
| CHLOROFORM                | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 11                  | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 113                 | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE        | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE        | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE        | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE          | nd           | 8.5          | 8.2         | nd          | nd         | 4.0      | 21.5     | 36.7     | 41.5     | 70.0     | nd       | nd       |
| VINYL CHLORIDE            | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| BENZENE                   | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE              | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOLUENE                   | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES             | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTION | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOU | INID       |          |          |          |          |          |          |          |
| TPH (PPMV)                | nd           | nd           | nd          | nd          | nd         | nd       | nd       | nd       | nd       | nd       | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Stagne Stroman 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| *======================================                                    |          |          | ******   |          | ******   | ======================================= | .======== |          |          |          | ======== |
|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------------------------------------|-----------|----------|----------|----------|----------|
|                                                                            | 191115   | 191120   | 191125   | 191130   | 191205   | 191205 dup                              | 191210    | 191215   | 191220   | 191225   | 191230   |
| DATE ANALYZED                                                              | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94                                | 09/22/94  | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 |
| TIME ANALYZED                                                              | 10:11    | 10:25    | 10:37    | 10:55    | 11:30    | 11:36                                   | 11:55     | 12:08    | 12:19    | 12:32    | 12:44    |
| DEPTH (feet)                                                               | 15       | 20       | 25       | 30       | 5        | 5                                       | 10        | 15       | 20       | 25       | 30       |
| 1,1 DiCHLORO ETHANE                                                        | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE                                                        | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE                                                     | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | 6.4      | 10.8     | nd       |
| 1,1,2 TriCHLORO ETHANE                                                     | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE                                                    | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE                                                        | nd       | · nd     | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE                                                       | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN                                                   | nd       | nđ       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE                                                     | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE                                                       | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | 4.6      | 37.1     | 36.1     | 2.8      |
| CHLOROFORM                                                                 | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE                                                       | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| FREON 11                                                                   | nđ       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| FREON 113                                                                  | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE                                                         | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE                                                         | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE                                                         | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE                                                     | nd       | nd       | пd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE                                                           | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE                                                             | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| BENZENE                                                                    | nd       | bn       | ba       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| ETHYLBENZENE                                                               | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| TOLUENE                                                                    | nd       | nd       | nd       | nd       | nd       | nđ                                      | nd        | nd       | nd       | nd       | nd       |
| TOTAL XYLENES                                                              | nd       | · nd     | nd       | nđ       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 UG/L FOR EACH COMPOUND |          |          |          |          |          |                                         |           |          |          |          |          |
| TPH (PPMV)                                                                 | nd       | nd       | nd       | nd       | nd       | nd                                      | nd        | nd       | nd       | nd       | nd       |
|                                                                            |          |          |          |          |          |                                         |           |          |          |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagn Johnsoner 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| ***************************************                                    |          | ******** | ======== |            | *********** |          |          |          |          | =========== |          |
|----------------------------------------------------------------------------|----------|----------|----------|------------|-------------|----------|----------|----------|----------|-------------|----------|
|                                                                            | 191235   | 191240   | 191305   | 191305 dup | 191310      | 192005   | 192010   | 192105   | 192110   | 192205      | 192210   |
| DATE ANALYZED                                                              | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94   | 09/22/94    | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94 | 09/22/94    | 09/22/94 |
| TIME ANALYZED                                                              | 12:59    | 13:14    | 14:24    | 14:27      | 14:48       | 15:48    | 16:03    | 16:31    | 16:43    | 16:59       | 17:09    |
| DEPTH (feet)                                                               | 35       | 40       | 5        | 5          | 10          | 5        | 10       | 5        | 10       | 5           | 10       |
| 1,1 DiCHLORO ETHANE                                                        | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,1 DiCHLORO ETHENE                                                        | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,1,1 TriCHLORO ETHANE                                                     | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,1,2 TriCHLORO ETHANE                                                     | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,2 Cis DiCHLORO ETHENE                                                    | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,2 DiCHLORO ETHANE                                                        | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | · nd     | nd          | nd       |
| 1,2 DiCHLORO PROPANE                                                       | nd       | nd       | nd       | nd         | 22.2        | nd       | nd       | nd       | nd       | nd          | nd       |
| 1,2 Trans DiCHLORO ETHEN                                                   | nd       | nd       | nd       | nd         | nd          | nd       | . nd     | nd       | nd       | nd          | nd       |
| BROMO DICHLORO METHANE                                                     | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| CARBON TetraCHLORIDE                                                       | 2.6      | nd       | nd       | 3.8        | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| CHLOROFORM                                                                 | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| Cis DiCHLORO PROPENE                                                       | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| FREON 11                                                                   | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| FREON 113                                                                  | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| METHYLENE CHLORIDE                                                         | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| TetraCHLORO ETHANE                                                         | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| TetraCHLORO ETHENE                                                         | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| Trans DiCHLORO PROPENE                                                     | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| TriCHLORO ETHENE                                                           | nd       | nd       | nd       | nd         | 4.1         | nd       | nd       | nd       | nd       | nd          | nd       |
| VINYL CHLORIDE                                                             | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| BENZENE                                                                    | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| ETHYLBENZENE                                                               | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| TOLUENE                                                                    | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| TOTAL XYLENES                                                              | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd       | nd       | nd          | nd       |
| ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 UG/L FOR EACH COMPOUND |          |          |          |            |             |          |          |          |          |             |          |
| TPH (PPMV)                                                                 | nd       | nd       | nd       | nd         | nd          | nd       | nd       | nd nd    | nd       | nd          | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagn Harbman 18-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | BLANK       | 192305       | 192405      | 192410       | 192505   | 192510   | 191405 1 | 91405 dup | 191410   | 191415   |
|---------------------------|-------------|--------------|-------------|--------------|----------|----------|----------|-----------|----------|----------|
| DATE ANALYZED             | 09/23/94    | 09/23/94     | 09/23/94    | 09/23/94     | 09/23/94 | 09/23/94 | 09/23/94 | 09/23/94  | 09/23/94 | 09/23/94 |
| TIME ANALYZED             | 07:10       | 08:19        | 08:45       | 08:54        | 09:33    | 09:41    | 10:29    | 10:30     | 10:50    | 10:58    |
| DEPTH (feet)              | <b></b>     | 5            | 5           | 10           | 5        | 10       | 5        | 5         | 10       | 15       |
| 1,1 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nđ       | nd       | nd       | nd        | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | 6.4      | nd       |
| 1,1,2 TriCHLORO ETHANE    | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nd       | nd ·     | nd       | nd        | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nd          | nd           | nd          | nd           | , nd     | nd       | nd       | nd        | nd       | nd       |
| BROMO DICHLORO METHANE    | nd          | nd           | nđ          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| CARBON TetraCHLORIDE      | nd          | nd           | nd          | nd           | nd       | nd       | 24.8     | 4.2       | 21.3     | nd       |
| CHLOROFORM                | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd          | nd           | nd          | nd           | nđ       | nd       | nd       | nd        | nd       | nd       |
| FREON 11                  | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| FREON 113                 | nd          | nd           | nd          | nd           | nđ       | nd       | nd       | nd        | nd       | nd       |
| METHYLENE CHLORIDE        | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| TetraCHLORO ETHANE        | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| TetraCHLORO ETHENE        | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| TriCHLORO ETHENE          | nd          | nd           | nd          | nd           | nd       | nd       | 14.3     | nd        | 10.6     | nd       |
| VINYL CHLORIDE            | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| BENZENE                   | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| ETHYLBENZENE              | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| TOLUENE                   | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |
| TOTAL XYLENES             | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nđ       |
| ND INDICATES NOT DETECTED | AT DETECTIO | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | TD       |          |          |           |          | *        |
| TPH (PPMV)                | nd          | nd           | nd          | nd           | nd       | nd       | nd       | nd        | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dlayne Hartman 10-6-94

TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | 191420      | 191425       | 191430      | 191435        | 191440   | 191505   | 191505 dup | 191510   | 191515   | 191520   |
|---------------------------|-------------|--------------|-------------|---------------|----------|----------|------------|----------|----------|----------|
| DATE ANALYZED             | 09/23/94    | 09/23/94     | 09/23/94    | 09/23/94      | 09/23/94 | 09/23/94 | 09/23/94   | 09/23/94 | 09/23/94 | 09/23/94 |
| TIME ANALYZED             | 11:11       | 11:19        | 11:33       | 11:47         | 11:57    | 12:24    | 12:26      | 12:53    | 13:02    | 13:14    |
| DEPTH (feet)              | 20          | 25           | 30          | 35            | 40       | 5        | 5          | 10       | 15       | 20       |
| 1,1 DiCHLORO ETHANE       | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | 38.8        | 60.5         | 43.1        | nd            | 55.9     | nd       | nd         | nd       | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE    | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | · nd        | nd           | nd          | nd            | nd       | · nd     | nd         | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| BROMO DICHLORO METHANE    | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| CARBON TetraCHLORIDE      | 84.6        | 150.5        | 104.7       | 31.0          | 141.3    | 5.8      | nd         | 17.2     | 19.4     | nd       |
| CHLOROFORM                | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| FREON 11                  | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| PREON 113                 | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| METHYLENE CHLORIDE        | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| TetraCHLORO ETHANE        | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| TetraCHLORO ETHENE        | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| TriCHLORO ETHENE          | 17.5        | 42.3         | 31.8        | 14.3          | 70.7     | nd       | nd         | nd       | nd       | nd       |
| VINYL CHLORIDE            | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| BENZENE                   | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| ETHYLBENZENE              | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| TOLUENE                   | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| TOTAL XYLENES             | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTIO | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUND |          |          |            |          |          |          |
| TPH (PPMV)                | nd          | nd           | nd          | nd            | nd       | nd       | nd         | nd       | nđ       | nd       |
|                           |             |              |             |               |          |          |            |          |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Hartman



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | 191525      | 191530       | 191535      | 191540       | 191605   | 191610      | 191615   | 191620     | 191625   | 191625 dup |
|---------------------------|-------------|--------------|-------------|--------------|----------|-------------|----------|------------|----------|------------|
| DATE ANALYZED             | 09/23/94    | 09/23/94     | 09/23/94    | 09/23/94     | 09/23/94 | 09/23/94    | 09/23/94 | 09/23/94   | 09/23/94 | 09/23/94   |
| TIME ANALYZED             | 13:31       | 13:42        | 13:57       | 14:08        | 14:57    | 15:05       | 15:19    | 15:33      | 15:44    | 15:59      |
| DEPTH (feet)              | 25          | 30           | 35          | 40           | 5        | 10          | 15       | 20         | 25       | 25         |
| 1,1 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| 1,1 DiCHLORO ETHENE       | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nđ         |
| 1,1,1 TriCHLORO ETHANE    | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| 1,1,2 TriCHLORO ETHANE    | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| 1,2 Cis DiCHLORO ETHENE   | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| 1,2 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nd       | nd ·        | nd       | nd         | nd       | nd         |
| 1,2 DiCHLORO PROPANE      | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| 1,2 Trans DiCHLORO ETHEN  | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| BROMO DICHLORO METHANE    | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| CARBON TetraCHLORIDE      | nd          | 3.8          | 22.3        | 4.4          | nd       | nd          | пd       | nd         | nd       | nd         |
| CHLOROFORM                | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| Cis DiCHLORO PROPENE      | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| FREON 11                  | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| FREON 113                 | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| METHYLENE CHLORIDE        | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| TetraCHLORO ETHANE        | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| TetraCHLORO ETHENE        | nd          | nd           | nđ          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| Trans DiCHLORO PROPENE    | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| TriCHLORO ETHENE          | nd          | nd           | 7.8         | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| VINYL CHLORIDE            | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| BENZENE                   | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| ETHYLBENZENE              | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| TOLUENE                   | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| TOTAL XYLENES             | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
| ND INDICATES NOT DETECTED | AT DETECTIO | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | D<br>D   | •••••       |          |            |          |            |
| TPH (PPMV)                | nd          | nd           | nd          | nd           | nd       | nd          | nd       | nd         | nd       | nd         |
|                           |             |              |             |              |          | <del></del> |          | - <i>-</i> |          |            |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Jonburan 10-6-94

TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| ======================================= |              |               | ======================================= |             |          |          | ======================================= |            |             |               |
|-----------------------------------------|--------------|---------------|-----------------------------------------|-------------|----------|----------|-----------------------------------------|------------|-------------|---------------|
|                                         | BLANK        | 330110        | 330210                                  | 330310      | 330410   | 330510   | 330610                                  | 330610 dup | 330710      | 330810        |
| DATE ANALYZED                           | 09/24/94     | 09/24/94      | 09/24/94                                | 09/24/94    | 09/24/94 | 09/24/94 | 09/24/94                                | 09/24/94   | 09/24/94    | 09/24/94      |
| TIME ANALYZED                           | 07:19        | 07:41         | 09:00                                   | 08:14       | 08:27    | 08:43    | 08:58                                   | 09:05      | 09:21       | 09:32         |
| DEPTH (feet)                            | ~-           | 10            | 10                                      | 10          | 10       | 10       | 10                                      | 10         | 10          | 10            |
| 1,1 DiCHLORO ETHANE                     | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| 1,1 DiCHLORO ETHENE                     | nd           | nd            | nd                                      | nd          | nđ       | nd       | nd                                      | nd         | nd          | nd            |
| 1,1,1 TriCHLORO ETHANE                  | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| 1,1,2 TriCHLORO ETHANE                  | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| 1,2 Cis DiCHLORO ETHENE                 | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| 1,2 DiCHLORO ETHANE                     | nd           | nd            | nd                                      | · nd        | nd       | nd       | nd                                      | nd         | · nd        | nd            |
| 1,2 DiCHLORO PROPANE                    | nd           | $\mathbf{nd}$ | nd                                      | nd          | . nd     | nd       | nd                                      | nd         | nd          | nd            |
| 1,2 Trans DiCHLORO ETHEN                | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd nd      | nd          | nd            |
| BROMO DICHLORO METHANE                  | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| CARBON TetraCHLORIDE                    | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| CHLOROFORM                              | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| Cis DiCHLORO PROPENE                    | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| FREON 11                                | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| FREON 113                               | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| METHYLENE CHLORIDE                      | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| TetraCHLORO ETHANE                      | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| TetraCHLORO ETHENE                      | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| Trans DiCHLORO PROPENE                  | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| TriCHLORO ETHENE                        | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | $\mathbf{nd}$ |
| VINYL CHLORIDE                          | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nđ         | nd          | nd            |
| BENZENE                                 | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| ETHYLBENZENE                            | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| TOLUENE                                 | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
| TOTAL XYLENES                           | nđ           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nđ         | nd          | nd            |
| ND INDICATES NOT DETECTED               | AT DETECTION | N LIMIT OF 1  | .0 UG/L FOR                             | EACH COMPOU | ND       |          |                                         |            |             |               |
| TPH (PPMV)                              | nd           | nd            | nd                                      | nd          | nd       | nd       | nd                                      | nd         | nd          | nd            |
|                                         |              |               |                                         |             |          |          |                                         |            | <del></del> |               |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dagu Harbman 10-6-94



SAIC Tooele Army Depot-South Area

TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | 330910      | 331010       | 331107      | 331210       | 331220   | 331307                                  | 331410   | 331510   | 331610   | 331610 dup |
|---------------------------|-------------|--------------|-------------|--------------|----------|-----------------------------------------|----------|----------|----------|------------|
| DATE ANALYZED             | 09/24/94    | 09/24/94     | 09/24/94    | 09/24/94     | 09/24/94 | 09/24/94                                | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94   |
| TIME ANALYZED             | 09:49       | 10:03        | 10:24       | 10:40        | 10:49    | 11:06                                   | 11:23    | 11:36    | 11:47    | 11:56      |
| DEPTH (feet)              | 10          | 10           | 10          | 10           | 10       | 10                                      | 10       | 10       | 10       | 10         |
| 1,1 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       |          |          |            |
| 1,1 DiCHLORO ETHENE       | nd          | nd           | nd<br>nd    | nd           | nd       | nd<br>nd                                | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd   |
| 1,1,1 TriCHLORO ETHANE    | nd<br>nd    | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd<br>nd | nd         |
| 1,1,2 TriCHLORO ETHANE    | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd<br>nd | nd       | nd<br>nd   |
| 1,2 Cis DiCHLORO ETHENE   | nd          | nd.          | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| 1,2 DiCHLORO ETHANE       | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | · nd     | nd       | nd         |
| 1,2 DiCHLORO PROPANE      | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| 1,2 Trans DiCHLORO ETHEN  | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| BROMO DICHLORO METHANE    | · nd        | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| CARBON TetraCHLORIDE      | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| CHLOROFORM                | nd          | nd           | nd          | nđ           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| Cis DiCHLORO PROPENE      | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| FREON 11                  | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| FREON 113                 | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| METHYLENE CHLORIDE        | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| TetraCHLORO ETHANE        | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| TetraCHLORO ETHENE        | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| Trans DiCHLORO PROPENE    | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| TriCHLORO ETHENE          | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| VINYL CHLORIDE            | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| BENZENE                   | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| BTHYLBENZENE              | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| TOLUENE                   | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| TOTAL XYLENES             | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |
| ND INDICATES NOT DETECTED | AT DETECTIO | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | D        | • • • • • • • • • • • • • • • • • • • • |          |          |          |            |
| TPH (PPMV)                | nd          | nd           | nd          | nd           | nd       | nd                                      | nd       | nd       | nd       | nd         |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Sarbnan 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| 252563525555555555555555555555555555555 |              |              | *******     | ==========   |          |          |          |          |          |            |
|-----------------------------------------|--------------|--------------|-------------|--------------|----------|----------|----------|----------|----------|------------|
|                                         | 331710       | 331810       | 331910      | 332010       | 191705   | 191710   | 191715   | 191720   | 191725   | 191725 dup |
| DATE ANALYZED                           | 09/24/94     | 09/24/94     | 09/24/94    | 09/24/94     | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94   |
| TIME ANALYZED                           | 12:09 .      | 12:21        | 12:34       | 12:46        | 13:51    | 13:54    | 14:18    | 14:26    | 14:43    | 14:53      |
| DEPTH (feet)                            | 10           | 10           | 10          | 10           | 5        | 10       | 15       | 20       | 25       | 25         |
| 1,1 DiCHLORO ETHANE                     | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,1 DiCHLORO ETHENE                     | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,1,1 TriCHLORO ETHANE                  | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,1,2 TriCHLORO ETHANE                  | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,2 Cis DiCHLORO ETHENE                 | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,2 DiCHLORO ETHANE                     | nd           | · nd         | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,2 DiCHLORO PROPANE                    | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| 1,2 Trans DiCHLORO ETHEN                | nd           | nd           | nd          | nd           | nd       | nd       | , nd     | nd       | nd       | nd         |
| BROMO DiCHLORO METHANE                  | nd           | nd           | nd          | nd           | nd       | . nd     | nd       | nd       | nd       | nd         |
| CARBON TetraCHLORIDE                    | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| CHLOROFORM                              | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| Cis DiCHLORO PROPENE                    | nd           | nd           | nd          | nd           | nd       | nd       | nđ       | nd       | nd       | nd         |
| FREON 11                                | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| FREON 113                               | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| METHYLENE CHLORIDE                      | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| TetraCHLORO ETHANE                      | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| TetraCHLORO ETHENE                      | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| Trans DiCHLORO PROPENE                  | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| TriCHLORO ETHENE                        | nd           | nd           | nd          | nd           | 33.2     | 82.9     | 5.7      | 30.3     | 337.8    | 425.5      |
| VINYL CHLORIDE                          | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| BENZENE                                 | nď           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| ETHYLBENZENE                            | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| TOLUENE                                 | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | 4.8      | nd         |
| TOTAL XYLENES                           | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd         |
| ND INDICATES NOT DETECTED               | AT DETECTION | N LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | D<br>D   |          |          |          |          |            |
| TPH (PPMV)                              | nd           | nd           | nd          | nd           | nd       | nd       | nd       | nd       | 13.81    | nd         |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Dlagne Hartman



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | 191729       | 191805     | 191810      | 191815       | 191820   | 191825   | 191830   | 191835   | 191840   |
|---------------------------|--------------|------------|-------------|--------------|----------|----------|----------|----------|----------|
| DATE ANALYZED             | 09/24/94     | 09/24/94   | 09/24/94    | 09/24/94     | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94 | 09/24/94 |
| TIME ANALYZED             | 15:10        | 16:01      | 16:10       | 16:22        | 16:35    | 16:50    | 17:02    | 17:18    | 17:27    |
| DEPTH (feet)              | 29           | 5          | 10          | 15           | 20       | 25       | 30       | 35       | 4 (      |
| 1,1 DiCHLORO ETHANE       | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| 1,1 DiCHLORO ETHENE       | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| 1,1,1 TriCHLORO ETHANE    | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| 1,1,2 TriCHLORO ETHANE    | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| 1,2 Cis DiCHLORO ETHENE   | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| 1,2 DiCHLORO ETHANE       | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | · no     |
| 1,2 DiCHLORO PROPANE      | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| ,2 Trans DiCHLORO ETHEN   | nd           | ņd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| BROMO DICHLORO METHANE    | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| CARBON TetraCHLORIDE      | nd           | nd         | nd          | 9.1          | 1.9      | nd       | 2.0      | nd       | 7.8      |
| CHLOROFORM                | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| is DiCHLORO PROPENE       | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| REON 11                   | nd           | nd         | nd          | nđ           | nd       | nd       | nd       | nd       | no       |
| REON 113                  | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| METHYLENE CHLORIDE        | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| TetraCHLORO ETHANE        | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| TetraCHLORO ETHENE        | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| Trans DiCHLORO PROPENE    | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| rrichloro ethene          | 356.0        | nd         | nd          | nd           | nd       | nd       | nd       | nd       | 40.8     |
| VINYL CHLORIDE            | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| BENZENE                   | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| ETHYLBENZENE              | nď           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| TOLUENE                   | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |
| TOTAL XYLENES             | nd           | nd         | nd          | nđ           | nd       | nd       | nd       | nd       | no       |
| ND INDICATES NOT DETECTED | AT DETECTION | LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | D        |          |          |          |          |
| грн (ррму)                | nd           | nd         | nd          | nd           | nd       | nd       | nd       | nd       | no       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Gorbman 10-6-94



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | BLANK       | 191905     | 191905 dup   | 191910       | 191915        | 191920   | 191925   | 191930   | 191935   | 191940   | 192605   | 192610   |
|---------------------------|-------------|------------|--------------|--------------|---------------|----------|----------|----------|----------|----------|----------|----------|
| DATE ANALYZED             | 09/25/94    | 09/25/94   | 09/25/94     | 09/25/94     | 09/25/94      | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 |
| TIME ANALYZED             | 07:54       | 08:25      | 08:27        | 08:51        | 09:09         | 09:22    | 09:34    | 09:56    | 10:11    | 10:28    | 10:56    | 11:02    |
| DEPTH (feet)              |             | 5          | 5            | 10           | 15            | 20       | 25       | 30       | 35       | 40       | 5        | 10       |
| 1,1 DiCHLORO ETHANE       | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | nd          | nd         | nd           | nd           | nd            | nd       | nd       | 3.3      | nd       | 3.1      | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE    | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE   | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd          | · nd       | nd           | nd           | nđ            | nd       | · nd     | nd       | nd       | nd       | nd       | · nd     |
| 1,2 DiCHLORO PROPANE      | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE    | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE      | nd          | nd         | nd           | nd           | nd            | nd       | 17.8     | 23.6     | 2.1      | 23.4     | nd       | nd       |
| CHLOROFORM                | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 11                  | nd          | nd         | nd           | nd           | $\mathbf{nd}$ | nd       |
| FREON 113                 | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE        | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE        | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE        | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE          | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE            | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| BENZENE                   | nd          | nd         | nd           | nđ           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE              | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOLUENE                   | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES             | nd          | nd         | nd           | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTIO | N LIMIT OF | 1.0 UG/L FOR | EACH COMPOUN | ID            |          |          |          |          |          |          |          |
| TPH (PPMV)                | nd.         | nd.        | nd nd        | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

TIMM

Blagne Bontman 10-6-94 1



TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

|                           | 192615     | 192615 dup    | 192620      | 192625       | 192705   | 192710   | 192715   | 192720   | 192725   | 330120   | 330520   | 331620   |
|---------------------------|------------|---------------|-------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|
| DATE ANALYZED             | 09/25/94   | 09/25/94      | 09/25/94    | 09/25/94     | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 | 09/25/94 |
| TIME ANALYZED             | 11:23      | 11:27         | 11:48       | 11:57        | 12:30    | 12:37    | 12:55    | 13:07    | 13:19    | 14:12    | 14:38    | 15:32    |
| DEPTH (feet)              | 15         | 15            | 20          | 25           | 5        | 10       | 15       | 20       | 25       | 20       | 20       | 20       |
| 1,1 DiCHLORO ETHANE       | nd.        | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE       | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nđ       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE    | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE    | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nđ       |
| 1,2 Cis DiCHLORO ETHENE   | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE       | nd         | nd            | nd          | nd           | · nd     | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE      | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN  | nd         | nd            | , nd        | nd           | nd       | nd       | nd       | , nd     | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE    | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE      | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| CHLOROFORM                | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE      | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 11                  | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 113                 | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE        | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE        | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE        | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE    | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE          | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| VINYL CHLORIDE            | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| BENZENE                   | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE              | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOLUENE                   | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES             | nd         | nd            | nd          | nd           | nd       | nd       | nd       | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED | AT DETECTI | ON LIMIT OF 1 | .0 UG/L FOR | EACH COMPOUN | D        |          |          |          |          |          |          |          |
| TPH (PPMV)                | nd         | nd            | nd          | nd           | nd       | nd.      | nd       | nd       | nd       | nd       | nd       | nd       |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagne Bartman 10-6-94

TEG Project #940919CM

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020), AND TPH (EPA Method 8015) ANALYSES OF VAPORS

| ************************************** | BLANK       | 192805     | 192805 dup   | 192810        | 192815   | 192820   | 192825   | 192830   | 192835   | 192840   |
|----------------------------------------|-------------|------------|--------------|---------------|----------|----------|----------|----------|----------|----------|
| DATE ANALYZED                          | 09/26/94    | 09/26/94   | 09/26/94     | 09/26/94      | 09/26/94 | 09/26/94 | 09/26/94 | 09/26/94 | 09/26/94 | 09/26/94 |
| TIME ANALYZED                          | 08:27       | 08:50      | 08:52        | 09:15         | 09:24    | 09:38    | 09:48    | 10:00    | 10:12    | 10:23    |
| DEPTH (feet)                           |             | 5          | 5            | 10            | 15       | 20       | 25       | 30       | 35       | 40       |
| 1,1 DiCHLORO ETHANE                    | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1 DiCHLORO ETHENE                    | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,1 TriCHLORO ETHANE                 | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,1,2 TriCHLORO ETHANE                 | nd          | nd         | nd           | nd            | nđ       | nd       | nd       | nd       | nd       | nd       |
| 1,2 Cis DiCHLORO ETHENE                | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| 1,2 DiCHLORO ETHANE                    | nd          | · nd       | nd           | nd            | nd       | nd       | · nd     | nd       | nd       | nd       |
| 1,2 DiCHLORO PROPANE                   | nd          | nd         | nd           | nd            | nd       | nd       | nd       | . nd     | nd       | nd       |
| 1,2 Trans DiCHLORO ETHEN               | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| BROMO DICHLORO METHANE                 | nd          | nd         | nd           | nd            | nd`      | nd       | nd       | nd       | nd       | nd       |
| CARBON TetraCHLORIDE                   | nd          | nd         | nd           | nd            | 3.07     | 9.37     | 7.55     | 6.95     | nd       | nd       |
| CHLOROFORM                             | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| Cis DiCHLORO PROPENE                   | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 11                               | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| FREON 113                              | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| METHYLENE CHLORIDE                     | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHANE                     | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| TetraCHLORO ETHENE                     | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| Trans DiCHLORO PROPENE                 | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| TriCHLORO ETHENE                       | nd          | nd         | nd           | nd            | 7.27     | 13.75    | 21.19    | 12.85    | 3.33     | 20.62    |
| VINYL CHLORIDE                         | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| BENZENE                                | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| ETHYLBENZENE                           | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| TOLUENE                                | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| TOTAL XYLENES                          | nd          | · nd       | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
| ND INDICATES NOT DETECTED              | AT DETECTIO | N LIMIT OF | 1.0 UG/L FOR | EACH COMPOUND |          |          |          |          |          |          |
| TPH (PPMV)                             | nd          | nd         | nd           | nd            | nd       | nd       | nd       | nd       | nd       | nd       |
|                                        |             |            |              |               |          |          |          |          |          |          |

ND INDICATES NOT DETECTED AT DETECTION LIMIT OF 1.0 PPMV

ANALYSES PERFORMED ON-SITE IN TEG'S CA DOHS CERTIFIED MOBILE LABORATORY (CERT #1667)

ANALYSES PERFORMED BY: MR. PAUL MOSHER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

Blagu Hardman

#### TEAD SOUTH AREA, SWMU 19 CCI4 Conc. (ug/L vapor) 5 fbgs



## TEAD SOUTH AREA, SWMU 19 CCl4 Conc. (ug/L vapor) 10 fbgs



### TEAD SOUTH AREA, SWMU 19 CCI4 Conc. (ug/L vapor) 15 fbgs



### TEAD SOUTH AREA, SWMU 19 CCI4 Conc. (ug/L vapor) 20 fbgs



### TEAD SOUTH AREA, SWMU 19 CCl4 Conc. (ug/L vapor) 25 fbgs



## TEAD SOUTH AREA, SWMU 19 CCI4 Conc. (ug/L vapor) 30 fbgs



## TEAD SOUTH AREA, SWMU 19 CCl4 Conc. (ug/L vapor) 35 fbgs



### TEAD SOUTH AREA, SWMU 19 CCl4 Conc. (ug/L vapor) 40 fbgs



# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 5 fbgs



# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 10 fbgs



#### TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 15 fbgs



# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 20 fbgs



## TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 25 fbgs



# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 30 fbgs



# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 35 fbgs



TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY

# TEAD SOUTH AREA, SWMU 19 TCE Conc. (ug/L vapor) 40 fbgs



TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY

### TEAD SOUTH AREA, SWMU 33

### SOIL VAPOR POINT LOCATION MAP



TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY

SOIL GAS DAILY CONTINUING CALIBRATION STANDARD REPORT

| ======================================       |              |                   | ====== |                 |                | ·               | <b>-</b> |
|----------------------------------------------|--------------|-------------------|--------|-----------------|----------------|-----------------|----------|
| DATE: 09/19/94<br>SUPPLY SOURCE: TEG RWOCB M |              |                   |        |                 |                |                 |          |
| INSTRUMENT: CRUISEMASTER S                   | HIMADZU      |                   |        |                 |                | ADZU GC14A-RIGH |          |
| COMPOUND                                     | ACTUAL CONC. | MEASURED<br>CONC. | %DIFF  | ACTUAL<br>CONC. | MEASURED CONC. | %DIFF           |          |
| CARBON TETRACHLORIDE                         |              |                   |        |                 |                |                 |          |
| DiCHLORO ETHENE (12 CIS)                     | 10.0         | 10.1              | 1.0%   | 10.0            | 8.7            | 13.3%           |          |
| DiCHLORO ETHENE (12 TRANS)                   | 10.0         | 10.9              | 8.6%   | 10.0            | 8.5            | 14.6%           |          |
| TetraCHLORO ETHENE                           | 10.0         | 10.7              | 6.7%   | 10.0            | 9.2            | 8.0%            |          |
| TriCHLORO ETHANE (111)                       | 10.0         | 10.0              | 0.0%   | 10.0            | 10.0           | 0.0%            |          |
| TriCHLORO ETHENE                             |              | 10.4              |        |                 | 9.1            |                 |          |
| BENZENE                                      | 10.0         |                   |        |                 | 9.1            |                 |          |
| CHLOROBENZENE                                | 10.0         | 10.6              | 5.7%   | 10.0            | 8.9            | 11.1%           |          |
| ETHYLBENZENE                                 | 10.0         | 10.6              | 5.5%   | 10.0            | 9.0            | 9.6%            |          |
| TOLUENE                                      | 10.0         | 10.3              | 3.3%   | 10.0            | 8.9            | 10.8%           |          |
| XYLENES                                      | 30.0         | 31.7              | 5.7%   |                 | 27.4           | 8.7%            |          |
|                                              | 47.8         | 47.8              | 0.0%   | 47.8            | 46.6           | 2.6%            |          |
|                                              |              |                   |        |                 |                |                 |          |

SOIL GAS DAILY CONTINUING CALIBRATION STANDARD REPORT

| SUIL GAS DAILY CONTINUING  |         |           |         |        |          |          |      |
|----------------------------|---------|-----------|---------|--------|----------|----------|------|
|                            |         |           | ======  | ====== | 92222222 |          |      |
| DATE: 09/20/94             |         |           |         |        |          |          |      |
| SUPPLY SOURCE: TEG RWQCB M | IX      |           |         |        |          |          |      |
| INSTRUMENT: CRUISEMASTER S |         |           |         |        |          |          |      |
| COMPOUND                   |         | MEASURED  | 1       |        |          |          |      |
| •                          | CONC.   | CONC.     | ĺ       | CONC.  | CONC.    |          |      |
| CARBON TETRACHLORIDE       |         |           |         | l      |          | <br>በ በሂ |      |
| DiCHLORO ETHENE (12 CIS)   |         |           |         |        |          |          |      |
| DiCHLORO ETHENE (12 TRANS) | 10.0    | 10.0      | 0.4%    | 10.0   | 9.2      | 8.3%     |      |
| TetraCHLORO ETHENE         |         |           |         | 10.0   | 9.9      | 1.5%     |      |
| TriCHLORO ETHANE (111)     |         | 10.0      |         |        | 10.0     |          |      |
| TriCHLORO ETHENE           |         | 10.4      |         |        | 10.0     |          |      |
| BENZENE                    |         | 10.1      | ,       |        | 9.8      |          |      |
| CHLOROBENZENE              |         | 10.8      | •       |        |          |          |      |
| ETHYLBENZENE               | 10.0    | 10.4      | 4.2%    | 10.0   | 10.1     | 1.2%     |      |
| TOLUENE                    |         | 10.3      |         | 10.0   | 10.0     | 0.1%     |      |
| XYLENES                    |         | 31.2      |         |        | 29.8     |          |      |
| TPH                        | 47.8    |           |         | 47.8   | 33.7     | 29.6%    |      |
|                            | ======= | ========= | ####### | ====== |          |          | ==== |

| SOIL | GAS | DAILY | CONTINUING | CALIBRATION | STANDARD REPORT |  |
|------|-----|-------|------------|-------------|-----------------|--|
|      |     |       |            |             |                 |  |

| DATE: 09/21/94<br>SUPPLY SOURCE: TEG RWQCB M<br>INSTRUMENT: CRUISEMASTER S |       | GC14A-LEFT        |                        | CRUISEM <i>A</i> | ASTER SHIMAN | DZU GC14A-RIG | SHT |
|----------------------------------------------------------------------------|-------|-------------------|------------------------|------------------|--------------|---------------|-----|
|                                                                            | CONC. | MEASURED<br>CONC. |                        | CONC.            | CONC.        |               |     |
| CARBON TETRACHLORIDE                                                       |       |                   |                        |                  |              |               |     |
| DICHLORO ETHENE (12 CIS)                                                   | 10.0  | 9.8               | 2.5%                   | 10.0             | 9.4          | 6.3%          |     |
| DICHLORO ETHENE (12 TRANS)                                                 | 10.0  | 9.3               | 7.5%                   | 10.0             | 8.5          | 15.5%         |     |
| TetraCHLORO ETHENE                                                         | 10.0  | 10.0              | 0.1%                   | 10.0             | 9.2          | 8.4%          |     |
| TriCHLORO ETHANE (111)                                                     | 10.0  | 10.0              | 0.0%                   | 10.0             | 10.0         | 0.0%          |     |
| TriCHLORO ETHENE                                                           |       |                   |                        | ļ.               | 9.0          |               |     |
| BENZENE                                                                    |       | 9.9               |                        |                  | 9.1          |               |     |
| CHLOROBENZENE                                                              | 10.0  | 8.7               | 13.1%                  | 10.0             | 9.4          | 6.3%          |     |
| ETHYLBENZENE                                                               | 10.0  | 9.8               | 1.6%                   | 10.0             | 9.3          | 6.9%          |     |
| TOLUENE                                                                    | 10.0  | 9.5               | 5.3%                   | 10.0             | 9.2          | 8.5%          |     |
| XYLENES                                                                    | 30.0  | 30.4              | 1.3%                   | 30.0             | 28.4         | 5.2%          |     |
| <br>ТРН                                                                    | 47.8  |                   | <br> <br>  <del></del> | 47.8             | 42.2         | 11.7%         |     |

SOIL GAS DAILY CONTINUING CALIBRATION STANDARD REPORT

| SOIL GAS DAILY CONTINUING                                                  |               |                |       |           |                   | ·     |   |
|----------------------------------------------------------------------------|---------------|----------------|-------|-----------|-------------------|-------|---|
| DATE: 09/22/94<br>SUPPLY SOURCE: TEG RWQCB M<br>INSTRUMENT: CRUISEMASTER S | IX<br>HIMADZU | GC14A-LEFT     |       | CRUISEMA: | STER SHIMAL       |       | Г |
|                                                                            | ACTUAL CONC.  | MEASURED CONC. | %DIFF | ACTUAL I  | MEASURED<br>CONC. | %DIFF |   |
| CARBON TETRACHLORIDE                                                       |               |                |       |           |                   |       |   |
| DICHLORO ETHENE (12 CIS)                                                   | 10.0          | 9.7            | 3.1%  | 10.0      | 10.2              | 2.1%  |   |
| DICHLORO ETHENE (12 TRANS)                                                 | 10.0          | 8.3            | 16.7% | 10.0      | 9.2               | 8.2%  |   |
| TetraCHLORO ETHENE                                                         | 10.0          | 9.4            | 6.3%  | 10.0      | 10.1              | 0.9%  |   |
| TriCHLORO ETHANE (111)                                                     | 10.0          | 10.0           | 0.0%  | 10.0      | 10.0              | 0.0%  |   |
| TriCHLORO ETHENE                                                           |               |                |       |           |                   |       |   |
| BENZENE                                                                    |               | 8.8            |       |           | 10.6              |       |   |
| CHLOROBENZENE                                                              | 10.0          | 9.1            | 8.9%  | 10.0      | 9.8               | 1.9%  |   |
| ETHYLBENZENE                                                               |               | 8.8            |       |           |                   |       |   |
| TOLUENE                                                                    |               | 9.3            |       |           |                   |       |   |
| XYLENES                                                                    |               | 27.4           |       |           |                   | 0.7%  |   |
| TPH                                                                        | 47.8          |                |       | 47.8      | 50.5              | 5.6%  |   |
|                                                                            |               |                |       |           |                   |       |   |

| COLL | CAC | DATIV | CONTINUIANO | CALIBRATION | CTANDADD | DEDODE |
|------|-----|-------|-------------|-------------|----------|--------|
| JUIL | UMJ | DWILI | CONTINUE    | CALIDKALIUN | SIANDAKU | REPURI |

| ***************************************                                    | =======      | *=======       |       | =======         |                |               |     |
|----------------------------------------------------------------------------|--------------|----------------|-------|-----------------|----------------|---------------|-----|
| DATE: 09/23/94<br>SUPPLY SOURCE: TEG RWQCB M<br>INSTRUMENT: CRUISEMASTER S | IX           |                |       |                 |                | NDZU GC14A-RI | GHT |
| COMPOUND                                                                   | ACTUAL CONC. | MEASURED CONC. | %DIFF | ACTUAL<br>CONC. | MEASURED CONC. |               |     |
| CARBON TETRACHLORIDE                                                       |              |                |       | ļi.             |                | 0.0%          |     |
| DICHLORO ETHENE (12 CIS)                                                   |              |                |       |                 | 8.4            |               |     |
| DICHLORO ETHENE (12 TRANS)                                                 |              |                |       |                 | 8.8            |               |     |
| TetraCHLORO ETHENE                                                         |              |                |       |                 | 8.7            | 13.2%         |     |
| TriCHLORO ETHANE (111)                                                     |              |                |       |                 | 10.0           |               |     |
| TriCHLORO ETHENE                                                           | 10.0         | 10.3           | 3.0%  | 10.0            | 8.8            | 12.3%         |     |
| BENZENE                                                                    |              | 10.4           |       |                 |                |               |     |
| CHLOROBENZENE                                                              |              | 10.8           |       |                 | 8.7            |               |     |
| ETHYLBENZENE                                                               |              | 10.5           |       |                 | 8.8            |               |     |
| TOLUENE                                                                    | 10.0         | 10.3           | 2.5%  | 10.0            | 8.9            | 11.1%         |     |
| XYLENES                                                                    |              | 32.6           |       |                 |                |               |     |
|                                                                            | 47.8         | 49.5           | 3.6%  | 47.8            | 47.4           |               |     |
|                                                                            |              |                |       |                 |                |               |     |



#### SOIL GAS DAILY CONTINUING CALIBRATION STANDARD REPORT

| ************************************** |       |          |        |        |          | . <b></b>        |
|----------------------------------------|-------|----------|--------|--------|----------|------------------|
| DATE: 09/24/94                         |       |          | ĺ      | ĺ      |          |                  |
| SUPPLY SOURCE: TEG RWQCB M             |       |          |        |        |          |                  |
| INSTRUMENT: CRUISEMASTER S             |       |          |        |        |          | ADZU GC14A-RIGHT |
|                                        |       | MEASURED | 1      | 1      |          |                  |
|                                        | CONC. | CONC.    |        | CONC.  | CONC.    |                  |
| CARBON TETRACHLORIDE                   |       | 10.0     |        | 1      |          |                  |
| DiCHLORO ETHENE (12 CIS)               | 10.0  | 12.2     | 21.5%  | 10.0   | 9.0      | 10.1%            |
| DiCHLORO ETHENE (12 TRANS)             | 10.0  | 12.0     | 20.4%  | 10.0   | 9.1      | 9.4%             |
| TetraCHLORO ETHENE                     | 10.0  | 12.4     | 24.1%  | 10.0   | 9.2      | 8.4%             |
| TriCHLORO ETHANE (111)                 | 10.0  | 10.0     | 0.0%   | 10.0   | 10.0     | 0.0%             |
| TriCHLORO ETHENE                       |       |          |        |        |          |                  |
| BENZENE                                |       | 12.0     | ,      | l      |          |                  |
| CHLOROBENZENE                          | 10.0  | 12.1     | 21.3%  | 10.0   | 9.1      | 8.6%             |
| ETHYLBENZENE                           | 10.0  | 12.0     | 19.6%  | 10.0   | 9.4      | 6.4%             |
|                                        |       | 11.9     |        | •      |          |                  |
| XYLENES                                |       | 36.7     |        |        |          | 7.2%             |
|                                        |       | 47.8     |        |        |          |                  |
| ****************                       |       |          | ====== | -===== | ******** |                  |

| SOTI | GAS | DATIV | CONTINUING  | CALIBRATION | STANDARD | DEDUDT |
|------|-----|-------|-------------|-------------|----------|--------|
| JULL | un. | DUTE  | CONTINUTION | CULTOKULION | JIMIUMKU | KELOKI |

|                            | ======  |            | ======= | =======  |             |                 | ==== |
|----------------------------|---------|------------|---------|----------|-------------|-----------------|------|
| DATE: 09/25/94             |         |            |         |          |             |                 |      |
| SUPPLY SOURCE: TEG RWQCB M | IX      |            |         |          |             |                 |      |
| INSTRUMENT: CRUISEMASTER S | HIMADZU | GC14A-LEFT |         | CRUISEM/ | ASTER SHIMA | NDZU GC14A-RIGH | IT   |
| COMPOUND                   | ACTUAL  | MEASURED   | %DIFF   | ACTUAL   | MEASURED    | %DIFF           |      |
|                            |         | CONC.      |         |          | CONC.       |                 |      |
| CARBON TETRACHLORIDE       |         | 10.0       |         |          |             |                 |      |
| DICHLORO ETHENE (12 CIS)   | 10.0    | 11.2       | 11.6%   | 10.0     | 8.6         | 14.0%           |      |
| DICHLORO ETHENE (12 TRANS) |         |            |         |          | 8.1         |                 |      |
| TetraCHLORO ETHENE         | 10.0    | 11.1       | 11.2%   | 10.0     | 8.5         | 15.4%           |      |
| TriCHLORO ETHANE (111)     | 10.0    | 10.0       | 0.0%    | 10.0     | 10.0        | 0.0%            |      |
| TriCHLORO ETHENE           | 10.0    | 10.7       |         | 10.0     | 8.3         | 17.1%           |      |
| BENZENE                    | 10.0    | 10.9       |         | 10.0     | 8.4         | 15.8%           |      |
| CHLOROBENZENE              | 10.0    | 10.8       | 7.5%    | 10.0     | 8.1         | 19.2%           |      |
| ETHYLBENZENE               | 10.0    | 10.8       | 7.9%    | 10.0     | 10.9        | 9.2%            |      |
| TOLUENE                    | 10.0    | 10.7       | 6.7%    | 10.0     | 8.3         | 17.5%           |      |
| XYLENES                    |         | 32.1       |         |          | 29.1        |                 |      |
| ТРН                        | 47.8    | 40.0       | 16.4%   | 47.8     | 50.7        | 6.1%            |      |
|                            |         |            | ======  |          | *********   |                 | ==== |

| COLL |     | DATIV | CONTINUENC  | OAL TODATTON | OTANDADO DEDOST |
|------|-----|-------|-------------|--------------|-----------------|
| 201F | GAS | DAILT | CUNITINUING | CALIBRATION  | STANDARD REPORT |

| DATE: 09/26/94<br>SUPPLY SOURCE: TEG RWQCB M<br>INSTRUMENT: CRUISEMASTER S |              | CRUISEM        | RUISEMASTER SHIMADZU GC14A-RIGHT |                 |                |       |  |
|----------------------------------------------------------------------------|--------------|----------------|----------------------------------|-----------------|----------------|-------|--|
|                                                                            | ACTUAL CONC. | MEASURED CONC. | %DIFF                            | ACTUAL<br>CONC. | MEASURED CONC. | %DIFF |  |
| CARBON TETRACHLORIDE                                                       |              |                |                                  | l               |                |       |  |
| Dichloro Ethene (12 CIS)                                                   | 10.0         | 11.3           | 13.0%                            | 10.0            | 9.1            | 9.0%  |  |
| DiCHLORO ETHENE (12 TRANS)                                                 | 10.0         | 10.4           | 4.2%                             | 10.0            | 8.7            | 12.8% |  |
| TetraCHLORO ETHENE                                                         | 10.0         | 10.8           | 8.4%                             | 10.0            | 8.9            | 10.8% |  |
| TriCHLORO ETHANE (111)                                                     | 10.0         | 10.0           | 0.0%                             | 10.0            | 10.0           | 0.0%  |  |
| TriCHLORO ETHENE                                                           |              |                |                                  |                 | 8.7            |       |  |
| BENZENE                                                                    |              | 10.5           |                                  | J               | 9.0            |       |  |
| CHLOROBENZENE                                                              | 10.0         | 11.0           | 9.6%                             | 10.0            | 8.9            | 11.3% |  |
| ETHYLBENZENE                                                               | 10.0         | 10.7           | 6.9%                             | 10.0            | 8.9            | 10.7% |  |
| TOLUENE                                                                    | 10.0         | 10.6           | 5.8%                             | 10.0            | 8.9            | 10.7% |  |
| XYLENES                                                                    | 30.0         | 32.6           | 8.6%                             | 30.0            | 26.6           | 11.3% |  |
| <br>ТРН                                                                    | 47.8         | 47.8           | 0.0%                             | 47.8            | 51. <b>4</b>   | 7.5%  |  |



### **Soil Gas Sampling Procedures**

#### **Probe Construction and Insertion**

#### Manual-Driven Probes

TEG's manually driven soil vapor probes are constructed of 0.625 inch outside diameter steel and equipped with a hardened steel tip. The probes are nominally 5 feet long and threaded together to reach multiple depths. An inert 1/8 inch nylaflow tube is threaded down the center of the probe and connected to a sampling port just above the tip. This internal sample tubing design eliminates any contact between the sample port and the gas sample.

The probe is driven into the ground by an electric rotary hammer. Once inserted to the desired depth, the probe is rotated approximately 3 turns to open the tip and exposes the vapor sampling ports. This design prevents clogging of the sampling ports and cross-contamination from soils during insertion.

#### **Hydraulically-Driven Probes**

TEG's hydraulically-driven soil vapor probes are constructed of either 1.0 or 1.5 inch outside diameter steel and equipped with a hardened drop-off steel tip. The probes are nominally 4 feet long and threaded together to reach multiple depths. The probe is driven into the subsurface with TEG's STRATAPROBE™ system. Once inserted to the desired depth, the probe is retracted slightly to expose the vapor sampling port. A small diameter inert tubing is then inserted through the center of the rod and threaded into a gas tight fitting just above the tip. After a sample is obtained the tubing is removed, the probe advanced to the next depth or removed. This design prevents clogging of the sampling port and cross-contamination from soils during insertion.

#### Soil Gas Sampling

Soil vapor is withdrawn from the inert nylaflow tubing using a 20 cubic centimeter (cc) syringe connected via an on-off valve. The first 3 dead volumes of gas are drawn and discarded at a minimum to flush the probe and fill it with in-situ soil vapor. The next 20 cc of gas are withdrawn in the syringe, plugged, and immediately transferred to the mobile lab for analysis within minutes of collection. The use of small calibrated syringes allowed for careful monitoring of purge and sample volumes. This procedure ensures adequate sample flow is obtained without excessive pumping of air or introduction of surface air into the sample.

Samples are stored in gas-tight vials for off-site analysis or directly injected from the collection syringe for on-site analyses.



#### **Field Records**

The field technician maintains a logsheet summarizing:

- Sample identification
- Probe location
- Date and time of sample collection
- Sampling depth
- Identity of samplers
- Weather conditions
- Sampling methods and devices
- Soil gas purge volumes
- Volume of soil gas extracted
- Observation of soil or subsurface characteristics (any condition that affects sample representativeness)
- Apparent moisture content (dry, moist or saturated etc.) of the sampling zone
- Chain of custody protocols and records used to track samples from sampling point to analysis.



### **Analytical Methodology**

#### **Operating Conditions and Instrumentation**

Halogenated, TPH, & Aromatic Hydrocarbons by EPA 8010/8015/8020

**Instrument:** Shimadzu GC-14 Gas Chromatograph **Column:** 75 meter DB-624, megabore capillary.

Carrier flow: Helium at 15 ml/min.

Detectors: Photoionization/Hall (EICD) or ECD detectors in series.

**Detectors:** Flame ionization detector on separate column. **Column oven:** 45°C for 2 min, 45°C to 175°C at 5°C/min.

Fixed and Biogenic Gases (O2, CO2, and Methane)

Instrument: SRI 8610 or Carle AGC 311 Gas Chromatograph

Column: 6 foot CTR

Carrier flow: Helium at 15 ml/min.

**Detectors:** Thermoconductivity (TCD) detectors.

#### **Standard Preparation**

**Primary (stock) standards** (100 mg/l of each component in methanol) are purchased from certified suppliers.

Secondary (Working) Standards (10 ug/ml) are made within 30 days by diluting primary standard 10 times (400 ul primary to 4 ml solvent).

Laboratory Check Samples are prepared at the midpoint concentration from a standard purchased from a source different than the primary standards.

Lot numbers and preparations of all standards are recorded on a log sheet kept in the mobile laboratory.

#### Initial Multi-Point Calibration Curve

An initial calibration curve of a minimum of 3 points is performed:

- When the GC column type is changed
- · When the GC operating conditions have changed
- When the daily mid-point calibration check cannnot meet the requirements as specified below.

Calibration curves for each target component are prepared by analyzing low, mid, and high calibration standards covering the expected concentration range. The lowest standard concentration will not exceed 5 times the detection limit for each compound.

A linearity check of the calibration curve for each compound is performed by computing a correlation coefficient and an average response factor. If a correlation coefficient of 0.99 or a percent relative standard deviation (%RSD) of  $\pm$  25% is obtained, an average response factor is used over the entire calibration range. If the linearity criteria are not obtained, quantitation for that analyte is performed using a calibration curve.



After each initial multi-point calibration, the validity of the curve is further verified with a laboratory control standards (LCS) prepared at the mid-point of the calibration range. The LCS includes all target compounds and the response factor (RF) must fall within  $\pm$  25% of the factor from the initial calibration curve.

Analyses by EPA Methods 8010 and 8015 were quantified using single point calibration curves. The continuing calibration standard result was used to calculate a new response factor on a daily basis. This procedure was approved by TetraTech field staff during the course of the field work.

#### Continuing Calibration (Daily Mid-point Calibration Check)

Continuing calibration standards prepared from a tracable source are analyzed at the beginning and end of each day. Acceptable continuing calibration agreement is set at +/- 20% to the average response factor from the calibration curve, except for freon, chloroethane, and vinyl chloride when a 25% agreement is required. When calibration checks fall outside this acceptable range for analytes detected on the site, corrective action is initiated by the on-site chemist.

The continuing calibration includes all compounds expected or detected at the site in addition to any specific compounds designated in the project workplan.

#### **Detection Limits**

Detection limits have been previously determined by the EPA method and are no more than 5 times lower than the lowest concentration standard of the calibration curve. For this program, the detection limits are.

| Compound                            | Detector    | MDL              |
|-------------------------------------|-------------|------------------|
| Aromatic Hydrocarbons (BTEX):       | PID         | 1 ug/l-vapor     |
| Halogenated Hydrocarbons (Solvents) | EICD or ECD | .05-1 ug/l-vapor |
| Fuel Hydrocarbons                   | FID         | 1ppm vapor       |
| Methane                             | FID         | 1 ppm vapor      |

#### Injection of Soil Gas Samples

Vapor samples are withdrawn from the probe sampling syringe with a 1 cc syringe and injected directly into a sampling port on the gas chromatograph. The injection syringe is flushed 2 times with the sample prior to injection. Injection syringes are flushed several times with clean air or discarded between injections.

#### Compound Identification and Quantification

All compounds detected in the soil gas samples are identified by chromatographic retention time. Quantification of the compounds is achieved by comparing the detector response for the sample with the average response factor from the active calibration curve.

All EPA 8010/8020 analyses are performed with multiple detectors on megabore capillary columns following EPA Method 8000 protocols. This configuration provides the required separation as well as dual-detector confirmation of the compounds. In addition, a second analysis is performed on all samples using a second column with an FID detector.

#### **Laboratory Data Logs**



The field chemist maintains analytical records including date and time of analysis, sampler's name, chemist's name, sample identification number, concentrations of compounds detected, calibration data, and any unusual conditions.



### **Quality Control Procedures**

#### **Compliance With Standards**

Sampling and analytical procedures used by TEG complied with the American Society for Testing and Materials' *Standard Guide for Soil Gas Monitoring in the Vadose Zone* (ASTM D5314-93).

#### Staff Responsibilities

Staff responsibilities regarding operating and quality assurance procedures are assigned as follows:

#### Field Supervisor/Chemist:

- daily maintenance, startup and calibration of analytical equipment
- daily performance of quality control protocol
- sample and QA/QC sample analysis
- preparation of standards for linearity checks
- sample collection
- Chain-of-Custody Report completion
- documentation of analyses, problems, QA, maintenance of project files
- preparation of preliminary analytical report

#### Laboratory Director Responsibility:

- preparation of SOPs and QA/QC protocol
- implementation of QA program and technical training of personnel
- document control, security and confidentiality
- technical application and development
- verification of project data completeness
- verification of QA/QC compliance
- verification of client requirements
- preparation of QA report to include: technical difficulties, QA/QC results and conclusions

#### **Sampling Quality Control**

#### **Method Blanks**

Prior to sampling each day, all components of the sampling system are checked for contamination by drawing ambient air from above ground through the sampling equipment, and injecting a sample into a gas chromatograph. The analysis results are compared to that of the ambient air and recorded in the data tables as blanks.



#### Sample Quality Control

Each sample is given a unique identification number specifying location and depth. Purge and sample volumes are monitored closely using small calibrated syringes to assure a proper flow of soil gas. This ensures a representative sample is obtained from the sample zone without excessive pumping, which could result in sampling of surface air.

#### **Decontamination Procedures**

To minimize the potential for cross-contamination between sites, all external soil vapor probe parts are wiped or washed cleaned of excess dirt and moisture with solvents or de-ionized water as appropriate. The probe's internal nylaflow tubing is purged with clean air between sampling locations or replaced as necessary. Sampling syringes are flushed with clean air after each use or replaced.

#### **Corrective Action**

Corrective action is taken when unexpected contaminant levels are detected. First duplicate samples are taken to verify the initial detection of petroleum hydrocarbons. If contamination is suspected, then the sample probes are disassembled, wiped cleaned of excess dirt and moisture, rinsed with deionized water, washed with Alconox and water, and rinsed again with deionized water. The sample tubing in the probe is replaced. Contaminated sampling syringes are discarded.



#### **Analytical Quality Control**

#### Method Blanks

Method blanks are performed at the start of each day by drawing clean air through the sampling equipment and analyzing. These blanks verify all components of the sampling and analytical system are free of contamination. Additional blanks are performed more often as appropriate depending upon the measured concentrations. The results of all blank analyses are recorded in the data tables. If a blank shows a measurable amount of any target compound, the on-site chemist will investigate and determine the source, and resolve the contamination problem prior to analyzing any samples.

#### **Duplicate Samples**

Duplicate samples are analyzed when inconsistent data are observed or as requested by the client or regulatory agency. Because soil vapor duplicates can vary widely, nominal relative percent difference (RPD) acceptance criteria is +/- a factor of 2.

#### Continuing Calibration (Daily Mid-point Calibration Check)

Continuing calibration standards prepared from a tracable source are analyzed at the beginning and end of each day. Acceptable continuing calibration agreement is set at +/- 20% to the average response factor from the calibration curve, except for freon, chloroethane, and vinyl chloride when a 25% agreement is required. When calibration checks fall outside this acceptable range for analytes detected on the site, corrective action is initiated by the on-site chemist. The continuing calibration includes all compounds expected or detected at the site in addition to any specific compounds designated in the project workplan.



TRANSGLOBAL

ENVIRONMENTAL GEOCHEMISTRY,

| CLIENT:         | 5/       | 41C     | · · · · · · · · · · · · · · · · · · · |                |             |                                             |           |                                        | DATE:     | 9,                 | /19/                                             | 94                                               |              | _PAGE       | OF         | 1                             |              |
|-----------------|----------|---------|---------------------------------------|----------------|-------------|---------------------------------------------|-----------|----------------------------------------|-----------|--------------------|--------------------------------------------------|--------------------------------------------------|--------------|-------------|------------|-------------------------------|--------------|
| ADDRESS:        |          |         |                                       |                |             |                                             |           |                                        | TEG P     | ROJEC              | ·<br>Т#:                                         | 90                                               | 10           | 1919 CM     | <b></b>    | <i></i>                       |              |
| PHONE:          |          |         |                                       | FAX:           |             |                                             |           |                                        | LOCAT     | 10N: _             | -                                                | EA                                               | D            | S. Av       | ea         |                               |              |
| CLIENT PROJE    | CT # :   |         |                                       | PROJECT M.     | ANAGER:     |                                             |           |                                        | COLLEG    | CTOD.              | 7                                                | ason                                             | , F          | erber       | DATE OF    | .G/19                         | 194          |
|                 |          | 1       | i                                     |                | 1 49        | ///                                         | /10/      | 47 /                                   | , , ,     | 7 /                | 7 /                                              | / / /                                            |              | 777         | COLLECTION |                               | 4            |
|                 | :        |         | i<br>I                                |                | AMAL ON SO  | 3 3 6 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |           |                    | //s                                              | //,                                              | //           | Volum       | n0-        | Total Number<br>Of Containers | tory<br>umb  |
|                 | :<br>!   | !<br>   | Sample                                | 1              | WHO! OO'S   |                                             |           |                                        |           |                    |                                                  | //,                                              | //           | / / * * * . | drawn      | Con                           | bora<br>te N |
| Sample Number   | Depth    | Time    |                                       | Container Type | 12/2/       | 15/58/18/                                   | 18/8/2    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0/8/8/    | ^}\\$/             | <i>\$</i> //                                     |                                                  |              | FIELD NO    | OTES       | Ρō                            | No.          |
| Blank           |          | 1040    | yapor                                 | syringe        | XX          |                                             | X         |                                        |           |                    |                                                  |                                                  |              | lc          | <u></u>    | -                             |              |
| 190105          | 5        | 1115    | ,                                     | 0 0            | XX          | -                                           | $X_{-}$   |                                        |           |                    |                                                  | <u> </u>                                         |              | 100         | <u>(</u>   |                               |              |
| 190110          | 10       | 1138    |                                       | L.,            | XX          |                                             |           |                                        |           |                    |                                                  |                                                  |              | 100         |            |                               |              |
| 190115          | 15       | 1300    |                                       |                | XX          |                                             |           |                                        |           |                    | <del>                                     </del> |                                                  |              | 200         |            | ļ <u>.</u>                    |              |
| 190120          |          | 1306    | ···                                   |                | XX          | ——————————————————————————————————————      | X]        | _                                      |           |                    |                                                  |                                                  |              | 200         |            | -                             | ;            |
| 190125          |          | 1327    |                                       |                | XX          |                                             | X         | $\perp$                                |           | 4-4-               | 4-4-                                             |                                                  |              | 200         |            |                               |              |
| 1901 30         |          | 1345    |                                       |                |             | 11/                                         | X         |                                        |           | 11                 | 1                                                |                                                  |              | 200         |            | ļ                             |              |
| 1901 35         | 35       | 1443    |                                       |                | MA          |                                             |           |                                        | _ _ _     |                    | <u> </u>                                         |                                                  |              | 2.40        |            |                               |              |
| 190140          |          | 1501    |                                       |                | XX          |                                             |           |                                        |           | <del>      -</del> |                                                  |                                                  |              |             | ر د        | ļ                             |              |
| 190205          |          | 153/    |                                       |                | [X[X]       | 111                                         |           |                                        |           | 1                  | 1_1_                                             |                                                  | Ш            | 60          | cc         |                               |              |
| 190210          |          | 1550    |                                       |                | XX          | $\perp \perp \downarrow \downarrow$         |           |                                        |           |                    | <del>                                     </del> |                                                  |              | 60          | <u> </u>   |                               |              |
| 190215          | 15       |         |                                       |                | <u> </u>    | 1 1 1                                       |           |                                        |           |                    |                                                  |                                                  |              | 2.00        | ( )        |                               |              |
| 190220          |          | 1622    |                                       |                | XX          | ++                                          |           |                                        |           |                    |                                                  |                                                  |              | 200         |            |                               |              |
| 190225          |          | 1638    |                                       |                | XX          |                                             | $X \perp$ |                                        |           |                    | <del>                                     </del> | <del>                                     </del> |              | 200         |            |                               |              |
| 190230          |          | 1648    |                                       |                | X X         | +                                           | XI I      |                                        |           | -                  | <del>                                     </del> |                                                  |              | 260         | <u></u>    |                               |              |
|                 |          | 1705    |                                       |                | XX          |                                             |           |                                        |           | 1                  | 1-1-                                             | <u> </u>                                         |              | 260         | ( ر        |                               |              |
| 190240          | 40       | 1722    |                                       |                | XX          |                                             | X         | <del></del>                            |           | $\bot \bot$        |                                                  |                                                  |              | 2600        | <u></u>    |                               |              |
| RELINQUISHED BY | (C)====1 |         | DATE/T                                | NG DEATHUE     |             |                                             |           |                                        |           | 土土                 | 1_1_                                             |                                                  |              |             |            |                               |              |
| HELINGOISHED BA | (Signatu | re)     | DATE/I                                | IME HEEFIVE    | D BY Signa  | Les ?                                       | DATE/TIME | 1                                      | ·         | SAMPLE             | <del></del>                                      |                                                  | ļ            | LABORATORY  | NOTES:     |                               |              |
| RELINQUISHED BY | (Signatu | re)     | DATE/T                                |                | D BY (Signa |                                             | DATE/TIME |                                        | OTAL NUM  |                    |                                                  |                                                  | _            | -           |            |                               |              |
| 1               | ÷        | •       |                                       |                |             | •                                           |           |                                        | HAIN OF C |                    |                                                  | S Y/N/N/                                         | ٩            | $\dashv$    |            |                               |              |
|                 | 5        | SAMPL   | E DISPO                               | SAL INSTRUCT   | IONS        |                                             |           |                                        | ECEIVED   |                    |                                                  | COLD                                             | +-           | -           |            |                               |              |
| []              | TEG DIS  | POSAL ( | \$2.00 e                              | ach [] Return  | ☐ Pickup    | )                                           |           |                                        | OTES.     |                    |                                                  |                                                  | <del> </del> | 7           |            |                               |              |



### TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY.

| CLIENT:         |          | SAI          | C            |                                        |                  |                                                   |                                       | TEG PRO                                          | 9/20/                                           | 940                                              | 919                                              | PAGEOF.             |            |                        |
|-----------------|----------|--------------|--------------|----------------------------------------|------------------|---------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------|------------|------------------------|
| PHONE:          |          | ··           |              | FAX:                                   |                  |                                                   |                                       | LOCATIO                                          | ON:                                             | TEA                                              | Σ,                                               | South Are           |            |                        |
| CLIENT PROJE    | CT # :   |              |              | PROJECT MA                             | ANAGER:          |                                                   |                                       | COLLECT                                          | rop. T                                          | au                                               | $\mu_{\rm o}$                                    | sher collec         | F 9        | 20/94                  |
| <u></u>         |          |              | i            |                                        | 1 65/            | ///8/.0                                           | <b>9</b> /                            |                                                  | 1. 7                                            | ////                                             | 7                                                | / / /               |            |                        |
|                 |          | <u> </u><br> | Sample       |                                        | p.14.14.00 (8)   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                  | 3  3 <br> 3  3  5  5  5  5  5  5  5  5  5  5  5 |                                                  |                                                  | Volume<br>Withdrawi | T   Number | Laboratory Note Number |
| Sample Number   | Depth    | Time         | -            | Container Type                         | (3/3/3/          | /5/2/2/2/                                         | / <del> </del>                        | */*/0/ ^                                         | <u> </u>                                        | <del>/                                    </del> |                                                  | FIELD NOTES         | <u> </u>   | ا <u>خ د ا</u> 5       |
| Blank           |          | 000          | vapor        | syringe                                | XX               | <del></del>                                       |                                       | <del> </del>                                     |                                                 |                                                  |                                                  | /cc                 |            |                        |
|                 |          | 0825         |              |                                        | XXX              | <del>   X    -</del>                              |                                       |                                                  |                                                 | <del>                                     </del> |                                                  | 100 (               |            |                        |
| 190305 D        |          | 0851         |              |                                        |                  | +12+                                              |                                       |                                                  |                                                 |                                                  |                                                  | 100 cc              |            |                        |
| 190310          |          | 0941         |              | ** ***** · * * * * * * * * * * * * * * | XX -             | ++>+-                                             | $\vdash$                              | <del>                                     </del> | <del>-     '</del> -                            |                                                  |                                                  | 200 CC              |            |                        |
|                 | 70       | 1004         |              |                                        | XX               |                                                   |                                       | <del>├-</del> ├                                  |                                                 |                                                  |                                                  | 700 CC              |            | -}                     |
| 190320dap       |          |              |              |                                        |                  | <del>                                      </del> |                                       | <del>                                     </del> |                                                 |                                                  | $\dashv$                                         | 200 cc              |            | -}                     |
| 190325          | 25       | 1143         | -            |                                        |                  | <del>                                      </del> |                                       | <del> - - - - </del>                             |                                                 |                                                  | _                                                | 200 ( c             |            |                        |
|                 |          | 1207         |              |                                        |                  |                                                   |                                       |                                                  | _ -                                             |                                                  | -                                                | 260(                | _          |                        |
|                 |          | 1225         |              |                                        | 1942             | 1 147 1                                           |                                       | <del> </del>                                     |                                                 |                                                  |                                                  | 260 CC              |            | - <del> </del>         |
| 190345          |          | 1300         |              |                                        |                  | <del>                                      </del> |                                       |                                                  | <del>- - -</del>                                |                                                  | $\vdash$                                         | 320 00              | _          |                        |
| 190350          |          | 1315         |              |                                        | 1212             | <del>                                      </del> |                                       |                                                  |                                                 |                                                  | _                                                | 320 cc              |            | -                      |
| 190405          |          | 1347         |              |                                        | TXIXI            |                                                   |                                       |                                                  | 1:1                                             |                                                  |                                                  | 100 (C              |            |                        |
| 190410          | 50       | 1352         |              |                                        | 17/2/1           |                                                   |                                       |                                                  |                                                 | !                                                | $\dashv$                                         | 100 00              | _          |                        |
| 190415          |          | 1410         |              |                                        | XX               |                                                   |                                       |                                                  |                                                 |                                                  |                                                  | 200 CC              |            |                        |
| 190420          |          | 1418         |              |                                        | NY               |                                                   |                                       |                                                  |                                                 |                                                  |                                                  | 200 (               |            |                        |
| 190 4200        |          |              |              |                                        | VV               |                                                   |                                       |                                                  |                                                 |                                                  |                                                  | 200 CC              |            |                        |
| 90425           |          | 1505         |              |                                        | XX               |                                                   |                                       |                                                  |                                                 |                                                  |                                                  | 260 CC              |            |                        |
| RELINQUISHED BY | (Signati | ite)         | DATE/T       |                                        | D BY (Signature  | DATE/TIME                                         |                                       | SA                                               | MPLE RE                                         | CEIPT                                            |                                                  | LABORATORY NOTES:   |            |                        |
| RELINQUISHED BY | (Signatu | ite)         | DATE/T       | ME RECEIVE                             | D BY (Signature  | 9/20/44 15  B) DATE/TIME                          |                                       | OTAL NUME                                        |                                                 |                                                  | 1                                                |                     |            |                        |
|                 | , g u    | ,            | J, .   W   ! | 11001110                               | _ D. (Digitation | -, UNICIIMI                                       | 1-                                    | HAIN OF CL                                       |                                                 |                                                  |                                                  |                     |            |                        |
|                 |          | SAMPL        | E DISPO      | SAL INSTRUCT                           | IONS             |                                                   |                                       | EALS INTAC                                       |                                                 |                                                  | <del>                                     </del> |                     |            |                        |
| П               |          |              | \$2.00 e     |                                        | ☐ Piçkup         |                                                   |                                       | OTES:                                            |                                                 |                                                  |                                                  |                     |            |                        |

Eteg

TRANSGLOBAL Environmental

**Беоснемізт**ну,

| CLIENT:         |          | A ( ( |                      |                        |                                              |                                         |                  |         | PROJECT                                                            | ' ` <u> </u>      | 740  | 190 | 9 (M                            | 2_ of.                         |                |                           |
|-----------------|----------|-------|----------------------|------------------------|----------------------------------------------|-----------------------------------------|------------------|---------|--------------------------------------------------------------------|-------------------|------|-----|---------------------------------|--------------------------------|----------------|---------------------------|
| PHONE:          |          |       |                      | FAX:                   |                                              |                                         |                  | ŀ       | ATION: _                                                           | TE                | AD.  | ,   | South                           | Area                           |                |                           |
| CLIENT PROJEC   |          |       |                      | PROJECT M              | ANAGER: _                                    |                                         |                  | COLI    | LECTOR: _                                                          | Par               | 1 1  | 405 | her                             | DATE COLLEC                    | DF 9/2<br>HON. |                           |
| Sample Number   |          |       | Sample<br>Type       | Container Type SYVivge | krar, 20,000,000,000,000,000,000,000,000,000 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                  |         | 8/1/3/3/<br>8/1/3/3/3/<br>8/1/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/ |                   |      | //  | Volu<br>General<br>PIELO<br>260 | IML<br>Indrawi<br>NOTES<br>OCC | Total Number   | Laboratory<br>Note Number |
| 190440          | 40<br>45 |       |                      |                        | XX<br>ŽŽ                                     | X                                       |                  |         |                                                                    |                   |      |     | 26<br>320                       | 0 (c<br>) cc                   |                |                           |
|                 |          |       |                      |                        |                                              |                                         |                  |         |                                                                    |                   |      |     |                                 |                                |                | -                         |
|                 |          |       |                      |                        |                                              |                                         |                  |         |                                                                    |                   |      |     |                                 |                                |                |                           |
|                 |          |       |                      |                        |                                              |                                         |                  |         |                                                                    |                   |      |     |                                 |                                |                |                           |
|                 |          |       |                      |                        |                                              |                                         |                  |         |                                                                    |                   |      |     |                                 |                                |                |                           |
| RELINQUISHED BY |          |       | DATE/TI              | ME RECEIVE             | OVEY (Signature<br>D BY (Signature           |                                         | E/TIME<br>E/TIME | TOTAL N | SAMPLE<br>SAMPLE<br>SUMBER OF<br>F CUSTOD<br>NTACT? Y/F            | CONTAI<br>Y SEALS | NERS |     | LABORATO                        | ORY NOTES:                     | Γ              |                           |
| [] <b>7</b>     |          |       | E DISPO<br>\$2.00 ec | SAL INSTRUCT<br>ach    | IONS                                         |                                         |                  |         | D GOOD C                                                           |                   | LD   |     |                                 |                                |                |                           |



### TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY.

| CLIENT:           |             | 5A    | C              |                |                                           |                                       |                                       |    | TEG     | 9/2<br>PROJECT        | ۳. ۲     | 409   | PAGE    | OF                       | 2                             |                           |
|-------------------|-------------|-------|----------------|----------------|-------------------------------------------|---------------------------------------|---------------------------------------|----|---------|-----------------------|----------|-------|---------|--------------------------|-------------------------------|---------------------------|
| PHONE:            |             | _     |                | FAX:           |                                           |                                       |                                       |    | LOCA    | ATION:                | TEA      | D, 3  | S. Avea | <del>-</del>             |                               |                           |
| CLIENT PROJE      | CT #:_      |       |                | PROJECT M      | ANAGER:                                   |                                       |                                       |    | - COLLI | ECTOR:                | Paul     | Ú0:   | sher    | DATE OF                  | 9/2                           | 194                       |
| Sample Number     | . Depth     | Time  | Sample<br>Type | Container Type | 24 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |    |         |                       |          |       | // w.7  | lume<br>hdvawn<br>DNOTES | Total Number<br>Of Containers | Laboratory<br>Note Number |
| Blank             |             |       | vapor          | syringe        | XX                                        |                                       | X                                     |    |         |                       |          |       |         | c <b>C</b>               |                               |                           |
| 190505            | 5           | 0726  |                | 0 7            | XX                                        |                                       | $ \gamma $                            |    |         |                       |          |       | 10      | 0 cc                     |                               |                           |
| 190510            |             | 0735  |                |                | XX                                        |                                       | 4                                     |    |         |                       |          |       | 10      | 0 c c                    |                               |                           |
| 190515            |             | 0147  |                |                | XX                                        |                                       | X                                     |    |         |                       |          |       | 20      | O cc                     |                               |                           |
| 190520            | 20          | 0805  |                |                | XX                                        |                                       | $X \mid I$                            |    |         |                       |          |       |         | ) cc                     | <u> </u>                      |                           |
| 190525            | 25          | 0018  |                |                | XX                                        |                                       | X                                     |    |         |                       |          |       |         | ) CC                     |                               |                           |
| 190525D           | 25          | 0827  |                |                | XX                                        |                                       | M                                     |    |         |                       |          |       | 200     | ) ( _                    | _                             |                           |
| 190605            | 5           | 0927  |                |                | XX                                        |                                       | $ \mathcal{X} $                       |    |         |                       |          |       | 10      | O CC                     |                               |                           |
| 190610            | 10          | 0928  |                |                | XX                                        |                                       |                                       |    |         |                       |          |       | 160     | <u> </u>                 |                               |                           |
| 190615            | 15          | 0942  |                |                | IMXI.                                     |                                       |                                       |    |         |                       |          |       | 200     | D ec                     |                               |                           |
| 190620            | 20          | 0954  |                |                | XX                                        |                                       |                                       |    |         |                       |          |       | Zoo     | ے در                     |                               |                           |
| 1906 25           | 25          | 1006  |                |                | XX                                        |                                       | X                                     |    |         |                       |          |       | 200     | 3 CC                     |                               |                           |
| 190630            | 30          | 1018  |                |                |                                           |                                       | X                                     |    |         |                       |          |       | 260     | ) (د                     |                               | [ i                       |
| 1906 35           |             | 1042  |                |                | MM                                        |                                       | X                                     |    |         |                       |          |       | 26      | 5 رد                     |                               |                           |
| 1906 40           |             | 100   |                |                | XX                                        |                                       | X                                     |    |         |                       |          |       | 260     | 2 CC                     |                               |                           |
| 190705            | 5           | 1127  |                |                | XX                                        |                                       |                                       |    |         |                       |          |       | 100     | ) (c                     |                               |                           |
| 1907/0            | 10          | 1132  |                |                | XX                                        |                                       | X                                     |    |         |                       |          |       | 100     | ا د د                    |                               |                           |
| 190715            |             | 1148  |                |                | XX                                        |                                       | MI                                    |    |         |                       |          |       | 200     | رد                       |                               |                           |
| RELINQUISHED BY   | (Signati    | ure)  | DATE/T         | IME RECEIVE    | DAY (Signa                                | lure)                                 | DATE/TIN                              | 1  |         | SAMPLE                |          |       | LABORAT | ORY NOTES:               |                               |                           |
| RELINQUISHED BY   | (Signate    | uro)  | DATE/T         |                | D BY (Signa                               |                                       | DATE/TII                              |    |         | JMBER OF              |          |       | _       |                          |                               |                           |
| , LEEN GOIONED BY | Olynan      | u.c,  | DATE           | . HEOLIVE      | O Dr. (Digila                             | .5.67                                 | מאושווו                               | 75 |         | CUSTODY               |          | ININA |         |                          |                               |                           |
|                   | <del></del> | SAMPI | E DISPO        | SAL INSTRUCT   | IONS                                      |                                       |                                       |    |         | TACT? Y/N<br>D GOOD C |          | _+    |         |                          |                               |                           |
| []                |             |       |                | ach [] Return  |                                           |                                       |                                       |    | NOTES:  | J GOOD C              | UND./COL | ا - د |         |                          |                               |                           |

Eteg

TRANSGLOBAL

ENVIRONMENTAL GEOCHEMISTRY,

| CLIENT: SAIC                                     |                                        | DATE: 9/21/94                 | PAGEOF                                           |
|--------------------------------------------------|----------------------------------------|-------------------------------|--------------------------------------------------|
| ADDRESS:                                         |                                        | TEG PROJECT #: 94             | 07(1 (M)                                         |
| PHONE: FAX:                                      |                                        | LOCATION: TEAT                | ) , > . Arrea                                    |
| CLIENT PROJECT #: PROJECT M                      |                                        | COLLECTOR: - Paul             | Moslov DATE OF 9/21/94                           |
| Sample Number Depth Time Type Container Type     | 14   1   1   1   1   1   1   1   1   1 |                               | Molowar Total Number Of Container.               |
| 190715D 15 1155 vapor sogringe                   | XX                                     |                               | 200 cc                                           |
| 190720 20 1218                                   | XX                                     |                               | 200 cc                                           |
| 190725 25 1229                                   | XX                                     |                               | 200 (                                            |
| 90730 30 1242                                    | IMM I D                                |                               | 260 cc                                           |
| 190740 40 1306                                   |                                        |                               | 260 cc                                           |
| 190805 5 1339                                    |                                        |                               | 100 CC                                           |
| 190810 16 1347                                   | MX   X   I                             |                               | 100 CC                                           |
| 1908(5 15 1403                                   |                                        |                               | 200 CC                                           |
| 190820 20 1415                                   |                                        |                               | 200 CC                                           |
| 190825 25 1422                                   | XX                                     |                               | 200 cc                                           |
| 190830 30 M39                                    |                                        |                               | 260 (-                                           |
| 190835 35 1511                                   | XX                                     |                               | 260 cc                                           |
| 90905 5 1558                                     |                                        |                               | 100 cc                                           |
| 190810 10 1618                                   |                                        |                               | 100 CC                                           |
| 190915 15 1627                                   |                                        |                               | 200 CC                                           |
| 190920 20 1639                                   |                                        |                               | 200 CC                                           |
| 190925 25 1647                                   | XX                                     |                               | 200 cc                                           |
| 190830D 30 1447                                  |                                        |                               | 260cc                                            |
| RELINQUISHED BY (Signature) DATE/TIME // RECEIVE | D By (Signature) / DATE/TIME (6        | .55 SAMPLE RECEIPT            | LABORATORY NOTES:                                |
| AELINOUISHED BY (Signature) DATE/TIME RECEIVE    |                                        | OTAL NUMBER OF CONTAINERS     |                                                  |
| הבנותסטוסהבט פיז (Signature) DATE/TIME RECEIVE   | 1—                                     | HAIN OF CUSTODY SEALS YININ   | <u> </u>                                         |
| SAMPLE DISPOSAL INSTRUCT                         |                                        | EALS INTACT? Y/N/NA           | 4-4                                              |
| : SAMPLE DISPOSAL INSTRUCT                       |                                        | ECEIVED GOOD COND./COLD OTES: | <del>                                     </del> |



### TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY.

|                 |             |          |                       |                |             |                                       |          |            |                                            | ·····     |       |                |                      |                               |                  |
|-----------------|-------------|----------|-----------------------|----------------|-------------|---------------------------------------|----------|------------|--------------------------------------------|-----------|-------|----------------|----------------------|-------------------------------|------------------|
| CLIENT:         | 5           | rlC      |                       |                |             |                                       |          | DATE:      | 9/                                         | 22/94     | (     | PAGE/          | OF                   | 2                             |                  |
| ADDRESS:        |             |          |                       |                |             |                                       |          | _ TEG PR   | OJECT #                                    | : 9       | 10919 | M              |                      |                               |                  |
| PHONE:          |             |          |                       | FAX:           | ·           |                                       |          | LOCATIO    | ON:                                        | TE        | AD,   | S. Areq        |                      |                               | - <del>/</del> / |
| CLIENT PROJE    | CT #:_      |          | <del></del>           | PROJECT MA     | ANAGER:     | · · · · · · · · · · · · · · · · · · · |          | - COLLEC   | TOR:                                       | Paul      | Mon   | S. Areg<br>Ler | DATE OF<br>COLLECTIO | n9/                           | 22/4             |
|                 |             |          |                       |                | LE S        |                                       |          | 10/0/8/    |                                            | ///       | //,   | ////           | 44.4                 | be.                           | y<br>5er         |
|                 | i           |          | ĺ                     |                | AMP 100 100 |                                       |          |            | \\$\\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |           | //,   | Volvi          | , ne                 | Total Number<br>Of Containers | ator<br>TUT      |
|                 | 1           |          | Sample                |                | PX 80 4     |                                       |          |            | \\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | E///      |       | withd          |                      | 1 to 2                        | abor<br>ote      |
| Sample Number   | Depth       | Time     |                       | Container Type | 13/3/       | 3/5/3/3/                              | 1/1/8    | /8/8/0/4   | 78/8/                                      |           | _{-{- | FIELD NO       |                      | FÖ                            | ا تر يد          |
| Blank           |             |          | vapar                 | syringe        | YV          | X                                     | _        |            |                                            |           |       | <u> </u>       | <del></del>          |                               | -                |
| M1005           | 5           | 0728     | "                     | ′ ((           | XX          | 1 1 1 1 1 1 1                         |          |            |                                            |           |       | 100 c          |                      |                               |                  |
| 191010          | 10          | 0736     | 10                    | ١ .            | X X         |                                       | <u> </u> |            |                                            |           |       | 100            | $\subset$            |                               |                  |
| 191015          | 15          | 0751     | "(                    | 1.1            | XX          |                                       |          |            |                                            |           |       | 2000           | <u>د ر</u>           |                               |                  |
| 191015D         |             | 0805     |                       | 17             | XX          | M                                     |          |            |                                            |           |       | 200            | c c                  |                               |                  |
| 191020          | 20          | 0814     |                       | /(             | XX          |                                       |          |            |                                            |           |       | 200            | CC.                  |                               |                  |
| 191025          | 25          |          | <del></del>           | 17             | ЙЙ          |                                       |          |            |                                            |           |       | 260            | CC                   | 1                             | 1                |
| P1030           | 30          | 0840     | 11                    | 1/             | XX          |                                       |          |            |                                            |           |       | 260            | وو                   |                               |                  |
| 191035          |             | 0850     | 11                    | (1             | ХX          |                                       |          |            |                                            |           |       | 260            | ) ( _                |                               |                  |
| 191040          | 40          |          | li,                   | Ч              | XX          | Ń                                     |          |            |                                            |           |       | 260            | CC                   |                               |                  |
| F91105          | 5           | 0946     | 11                    | l i            | XX          |                                       |          |            |                                            |           |       | 100            | CC                   |                               |                  |
| 19/1/0          | 10          | 1004     | 15                    | 1 7            | XX          | X                                     |          |            |                                            |           |       | 1000           | ے                    |                               |                  |
| 191115          | 15          | 1013     | 15                    | · c            | XX          |                                       |          |            |                                            |           |       | 2000           | در                   |                               |                  |
| 191120          | 20          | 1022     | 11                    |                | XX          | X                                     |          |            |                                            |           |       | 2000           | <u>_</u>             |                               |                  |
| 19/125          |             | 1939     | 11                    | (1             | XX          | X                                     |          |            |                                            |           |       | 700 0          |                      |                               |                  |
| 191130          |             | 1055     | 11                    |                | XX          |                                       |          |            |                                            |           |       | 200            | <u> </u>             |                               |                  |
| 19005           |             | 1131     | "                     | د١             | XX          | X                                     |          |            |                                            |           |       | 100 0          | <u> </u>             | <u> </u>                      |                  |
| 691205>         |             | 1135     | 11                    | <u> </u>       | XX          | <u> </u>                              |          |            |                                            |           |       |                | C C                  |                               |                  |
| RELINQUISHED BY | (Signati    | ne)      | DATE/T                | IME BECEIVE    | D By (Signa | DATE                                  |          | S          | AMPLE R                                    | ECEIPT    |       | LABORATORY     | NOTES:               |                               |                  |
| RELINQUISHED BY | (C.555*     |          | DATE/T                | y U prug       | D BY IS TO  | 9/22/94                               | 17:15    | TOTAL NUM  |                                            |           |       | 1              |                      |                               |                  |
| HELINGOISHED BY | (Signati    | ure)     | UATE/II               | IME HECEIVE    | אטע (Signa  | ature) DAT                            | E/TIME   | CHAIN OF C | USTODY                                     | SEALS Y/N | /NA   | 1              |                      |                               |                  |
|                 | <del></del> | CARANI   | E DIOC                | SCAL MOTOUR    | 1040        | W                                     |          | SEALS INTA |                                            |           |       | -              |                      |                               |                  |
| F 1             |             |          | E DISPO<br>@ \$2.00 e | SAL INSTRUCT   | IONS        |                                       |          | RECEIVED G | OOD CO                                     | ND./COLD  |       | 4              |                      |                               |                  |
|                 | LU DIS      | , OSAL ( | W PEUU E              | acii i neidili | LI FICKU    | <i>.</i>                              |          | NOTES:     |                                            |           |       |                |                      |                               |                  |

Eteg

### TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY.

|                  | - /        |              | <del></del>      |                |                                                   |             |                                            |             |                   |                                               |                                              |                      |              |            |                   |                               |            |
|------------------|------------|--------------|------------------|----------------|---------------------------------------------------|-------------|--------------------------------------------|-------------|-------------------|-----------------------------------------------|----------------------------------------------|----------------------|--------------|------------|-------------------|-------------------------------|------------|
| CLIENT:          | SA         | 10           |                  |                |                                                   |             |                                            |             | DAT               | TE: 9                                         | /22                                          | 194                  |              | _PAGE      | - 0E              | 2                             |            |
| ADDRESS:         |            |              |                  | -              |                                                   |             |                                            |             | 1                 | S PROJE                                       | ,                                            |                      |              | 719 CM     | Or                |                               |            |
| PHONE:           |            |              |                  | FAX:           |                                                   |             |                                            |             |                   |                                               | -                                            | TE,                  |              |            | V aA              |                               |            |
|                  | OT "       |              |                  |                |                                                   | <del></del> |                                            |             | _   LOC           | CATION:                                       | . —                                          | · · · · ·            | <del>_</del> |            |                   | -/-                           | 7-,        |
| CLIENT PROJE     | GI#:       |              |                  | PROJECT M      |                                                   |             |                                            | <del></del> |                   | LECTOF                                        | <u>'                                    </u> | aul_                 | <u> </u>     | ssher      | DATE OF COLLECTIO |                               |            |
|                  |            |              | :                |                | AMAL GOING                                        | 0/0/        | 10 (30)<br>10 (10)<br>10 (10)              |             |                   | 8 / 4 / 6 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 |                                              |                      | //           | /// ۷04    |                   | Total Number<br>Of Containers | ry<br>nbe: |
|                  | ;          |              |                  |                | *** (D.18                                         | 210/21/     | %%\<br>\@\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |             |                   |                                               | \$/ /ś                                       | 3//                  | //           |            | PRAWN             | Nur<br>e:uc                   | ota.       |
| Sample Number    | ;<br>Depth | Time         | Sample<br>  Type | Container Type | 440 10 10 V                                       |             | (                                          |             |                   | 8   4   4<br>8   4   5  <br>8   5   5   5     |                                              |                      | //           | FIELD N    | TES.              | ota<br>Ota                    | aco.       |
| 19/2/0           |            | -            | VAPOR            | SYRINGE        | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | /∞ c       |                   |                               |            |
| 191215           | •          | 1207         | 7.9              | 11             | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 2000       |                   |                               |            |
| 191220           | 20         | 1221         | 1,               |                | XX                                                |             | X                                          |             |                   |                                               |                                              | 11                   |              | 2005       |                   |                               |            |
| 191225           | 25         | 1231         | 11               | 11             | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 200 C      |                   |                               |            |
| 191230           | 30         | 1246         | 11               | 11             | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 260        | CC                |                               |            |
| 191235           |            | 1258         | ч                | '\             | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 260        |                   |                               |            |
| 191240           |            | 1315         | 11               | t <sub>v</sub> | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 260        |                   |                               |            |
| 191305           |            | 1426         | 1,               | <u> </u>       | XX                                                |             | X                                          |             |                   |                                               |                                              |                      |              | 100        |                   |                               |            |
| 191305D          |            | 1427         | 1                | 1\             | 7X                                                |             | 1                                          |             |                   |                                               |                                              |                      |              | 100        |                   |                               |            |
| 191310           |            | 1447         | "                | <u> </u>       | XX                                                |             | X                                          |             |                   |                                               |                                              | $\perp \perp$        |              | /00        |                   |                               |            |
| 192005           |            | 1550         | 11               |                | XX                                                |             | <u>\</u>                                   |             |                   |                                               |                                              |                      |              | 1000       |                   |                               |            |
| 192010           | -/         | 1603<br>1630 | ((               | 11             | MA.                                               | +           | <del> }-</del>                             |             |                   |                                               |                                              |                      | -            | 1000       |                   |                               |            |
| 1921.05          |            |              | 4                | (/             | <del>                                      </del> | +           | <del>///-</del>                            |             |                   |                                               |                                              | <del>-   -  </del> - | +            | 100        |                   |                               |            |
| 192110           |            | 1638<br>1657 | 4                | <u> </u>       | <del> {\}   </del>                                | ++-         |                                            |             |                   | ╂ }- }                                        |                                              | - - -                | + 1          | 100        |                   |                               |            |
| 192210           |            | 1707         | 11               | (/             |                                                   | +-+-        | 1                                          | -++         |                   | ╂┷┼┼┼                                         |                                              |                      |              | 100 c      |                   | 1                             | . ]        |
|                  |            | 1101         |                  |                | I AI AI                                           |             | +/                                         |             | +-+-              |                                               |                                              |                      |              | 100 c      | <u></u>           |                               | 1          |
|                  |            |              |                  |                |                                                   |             |                                            |             |                   |                                               |                                              |                      | ++           |            |                   | <u> </u>                      |            |
| RELINQUISHED BY  | (Signatu   | ire)         | DATE/TI          | ME PISCETUA    | BY (Signa                                         | _           | DATET                                      |             | 17:15             | SAMP                                          | LE REC                                       | EIPT                 | 7            | LABORATORY | NOTES.            |                               |            |
| OCI INQUIEUCO DV | 16         |              | 0.450            | (PU    1       | Ush                                               |             | 12/04                                      |             | TOTAL N           | UMBER                                         | OF COI                                       | NTAINE               | RS           | LABORATOR  | NOTES:            |                               |            |
| RELINQUISHED BY  | (Signatu   | ire)         | DATE/TI          | ME HECEIVE     | D BY (Signa                                       | ture) '     | DATE                                       | IME         | CHAIN O           |                                               |                                              | LS Y/N/              | NA           |            |                   |                               |            |
|                  |            | SAMPI        | F DISPO          | SAL INSTRUCT   | IONS                                              |             | <del></del>                                |             | SEALS II          |                                               | •                                            |                      | _ _          | _          |                   |                               |            |
| [, ]             |            |              | \$2.00 ea        |                | [] Pickup                                         |             | · · · ·                                    |             | RECEIVE<br>NOTES: | D G001                                        | D COND                                       | ./COLD               | - -          | -          |                   |                               |            |



### TRANSGLOBAL ENVIRONMENTAL GEOCHEMISTRY.

| CLIENT:         |          | S            | ALC         | ,<br>          |                                           |                                                      | DAT        | E: 9/2                                  | 3/44        |     | PAGEO            | 2            |                           |
|-----------------|----------|--------------|-------------|----------------|-------------------------------------------|------------------------------------------------------|------------|-----------------------------------------|-------------|-----|------------------|--------------|---------------------------|
| ADDRESS:        |          |              |             |                |                                           |                                                      |            | PROJECT                                 |             |     | 9 CM             |              |                           |
| PHONE:          |          | <del> </del> | <del></del> | FAX:           |                                           |                                                      | LOC        |                                         |             | D,  | S. Area          | <del></del>  |                           |
| CLIENT PROJE    | CT # :   |              | · · ·       | PROJECT MA     |                                           |                                                      | — COLI     | LECTOR:                                 | Paul        | Mo  | sher DATE        | OF 9/7       |                           |
|                 |          |              | i .         |                | 4 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | /0/20/ Jak                                           | 18/8/2/3   | 8/4/9/                                  | ////        | //, | ///              | lber<br>Pers | Laboratory<br>Note Number |
|                 | 1        |              | i           |                | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1             | <br>       | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |             | //. | // VOL.          | Non          | ator<br>Nur               |
|                 | i        |              | Sample      |                | 12 \ 2\ \2\ \2\ \2\ \2\ \2\ \2\ \2\ \2\   | <b>*   6   7</b>   5   5   5   5   5   5   5   5   5 | %*\\$\\+\\ |                                         | &///        | //  | WITH DRAWN       | Sai-         | abor<br>ote               |
| Sample Number   |          |              |             | Container Type | 12/2/2/3                                  | <u>/                                    </u>         | 8/8/8/C    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |             |     | FIELD NOTES      | _ P≟ Ö       | تر تا                     |
| 192305          | 5        | 0819         | VADE        | SYRING         | XX                                        | _   75                                               |            |                                         |             |     | 100 cc           |              |                           |
| 192405          | 5        | 0844         | 11          | · I            | XX                                        | X                                                    |            |                                         |             |     | 100 cc           |              |                           |
| 192410          | 10       | 0853         | ((          | 10             | XX                                        | $\perp X \mid \cdot \mid$                            |            |                                         |             |     | 100 cc           |              |                           |
| 192505          | 5        | 0933         | 11          | ι              | XX                                        | X                                                    |            |                                         |             |     | 100 cc           |              |                           |
| 192510          | (0       | 09 38        | 11          | ((             | XX                                        | X                                                    |            |                                         |             |     | 1000             |              |                           |
| 191405          | .5       | 1028         | 11          | ( /            | XX                                        | $\gamma$                                             |            |                                         |             |     | /00 cc           |              |                           |
| 191405 D        | 5        | 1028         | 1,          | 11             | YV                                        | <b>V</b>                                             |            |                                         |             |     | 100 cc           |              |                           |
| 191410          |          | 1048         | (           | (/             | 18/2                                      | X                                                    |            |                                         |             |     | (00cc            |              |                           |
| 191415          | 15       | 1058         | 11          | ( )            | XX                                        | X                                                    |            |                                         |             |     | SOUCC            |              | -                         |
| 191420          | 20       | 1106         | (5          | ri             | NX                                        | X                                                    |            |                                         |             |     | 200 CC           |              |                           |
|                 | 25       | 1/18         | 11          | 4              | XV                                        | M                                                    |            |                                         |             |     | 200 ( 4          |              |                           |
| 191430          |          | 1133         | L(          | ١,             | XX                                        |                                                      |            |                                         |             | 1-1 | 360 CC           |              |                           |
| 191435          |          | 1146         | ct          | "              |                                           | V                                                    |            |                                         |             |     | 260 (C           |              |                           |
| 191440          | 40       | 1157         | 11          | 11             | XV                                        | V                                                    |            |                                         |             |     | 260 cc           |              |                           |
| 9 (505          | 5        | 1224         | (1          | 4              | 144                                       | Ŷ                                                    |            |                                         |             | 1-1 | 100 cc           |              |                           |
| 19150SD         | 5        | 1224         | 10          | 1.7            | VV                                        |                                                      |            |                                         |             |     | 100 CC           |              |                           |
| 191570          |          |              | 11          | 14             |                                           |                                                      |            |                                         |             |     | 100 CC           |              |                           |
| 191515          |          | /302         | 11          | 110            | XX                                        | ×                                                    |            |                                         |             |     | 20000            |              |                           |
| RELINQUISHED BY |          |              | DATE/T      |                | O Ay (Signature)                          | PATEITIME                                            | 6:30       | SAMPLE F                                | RECEIPT     | 1   | LABORATORY NOTES | <del></del>  | 1                         |
|                 |          |              |             | 100            | Myher                                     | परेंग्रहम                                            | TOTAL N    | UMBER OF                                | CONTAINERS  | s   | ]                |              |                           |
| RELINQUISHED BY | (Signati | ne)          | DATE/T      | IME RECEIVE    | D BY (Signature)                          | DATE/TIME                                            | CHAIN O    | F CUSTODY                               | SEALS Y/N/N | A   | ]                |              |                           |
|                 | ·        |              |             |                |                                           | <del></del>                                          | SEALS II   | NTACT? Y/N                              | INA         |     | 1                |              |                           |
|                 |          |              |             | DSAL INSTRUCT  | <del></del>                               |                                                      | ~~         | D GOOD CO                               | ND./COLD    |     |                  |              |                           |
|                 | IEG DIS  | PUSAL (      | g \$2.00 e  | ach, 🔯 Return  | [] Pickup                                 |                                                      | NOTES:     |                                         |             | I   |                  |              |                           |

Leg

TRANSGLOBAL

ENVIRONMENTAL GEOCHEMISTRY.

| CLIENT:            |            | 5     | ALC            |                |             |                                  |                         |         | TE                      | G PRO                         | DJECT                                  | #.     | <b>94</b>                                        | 09       | PAGE<br>19 CM |                         |              | 2                           | _           |
|--------------------|------------|-------|----------------|----------------|-------------|----------------------------------|-------------------------|---------|-------------------------|-------------------------------|----------------------------------------|--------|--------------------------------------------------|----------|---------------|-------------------------|--------------|-----------------------------|-------------|
| PHONE:             |            |       |                | FAX:           |             |                                  |                         |         | 1.,                     | CATIC                         | <b>384</b> .                           | 7      | EAD                                              | ,        | S. Are        | <u>ea</u>               |              |                             | _/          |
| CLIENT PROJE       | CT #:.     |       |                | PROJECT M      | ANAGER:     |                                  |                         |         |                         |                               | OR:                                    | Ra     | <i>N</i>                                         | 4        | osher         | DATE (                  | DE 9         | 23/                         | GC          |
| Sample Number      | i<br>Depth | Time  | Sample<br>Type | Container Type | AMP 180 180 |                                  |                         |         |                         |                               | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |        | ///                                              |          | WITT          | OL.<br>+ DEAWN<br>NOTES | Total Number | Of Containers<br>Laboratory | Note Number |
| 19 PB 20           | 20         | 1314  | VAAR           | SYRINGE        | XX          |                                  |                         |         |                         |                               |                                        |        |                                                  |          | 7000          | ر ح                     |              |                             |             |
|                    | 25         | 1331  | 11             | , u            | XX          |                                  | X                       |         |                         |                               |                                        |        |                                                  | 1        | 200 0         |                         |              |                             |             |
| 191530             | 30         | 1342  | ι(             | ٠(             | XX          | 1 1 7                            |                         |         |                         |                               |                                        |        |                                                  | <u> </u> | 260           |                         |              |                             |             |
| 191535             | 35         | 1357  |                | ((             | X X         |                                  | Ž                       |         | $\perp \perp$           | $\perp$                       |                                        |        | <del>                                     </del> | ļ        | 260           |                         |              | -                           |             |
| 191540             | 40         |       |                | ·/             | MX          | $\downarrow\downarrow\downarrow$ | 4                       |         | $\downarrow \downarrow$ | $\perp \downarrow \downarrow$ |                                        |        |                                                  | <u> </u> | 260           | cد                      |              |                             |             |
| 191605             | 5          | 1457  | <del></del>    | ſι             |             | 1 1 1                            | 4                       | $\perp$ |                         |                               |                                        |        | 1                                                | $\perp$  | (600          |                         |              |                             |             |
| 191610             | 10         | 1505  |                | ιι             | XX          | 1 1 1                            | 9.1.1                   |         |                         |                               |                                        |        |                                                  | _        | 100           | <u>(C</u>               | İ            |                             | - •         |
| 191615             | 15         | 1519  |                | ι (            | XX          |                                  | $4 \parallel \parallel$ |         |                         |                               |                                        |        | 1                                                |          | 200           |                         |              |                             |             |
| 191620             | 20         | 1533  | (1             | "              | LXXL        | 1                                | 411                     |         | $\perp \perp$           |                               |                                        |        |                                                  | 1        | 200           | رر                      |              |                             |             |
| 19/625             |            | 1543  |                | ٤(             | MX          |                                  |                         |         |                         |                               |                                        |        |                                                  | _        | 200           |                         |              |                             |             |
| 191625D            | 25         | 1559  | 11             | 11             | XX          |                                  | 411                     |         |                         |                               |                                        |        |                                                  |          | 200           | در                      |              |                             |             |
|                    |            |       |                |                | 1 1         |                                  |                         |         |                         |                               |                                        |        |                                                  |          |               |                         |              |                             |             |
|                    |            |       |                |                |             |                                  |                         | $\perp$ |                         |                               |                                        |        |                                                  |          |               |                         | _            | _ ]                         |             |
|                    |            |       |                |                |             |                                  |                         |         |                         |                               |                                        |        |                                                  |          |               |                         |              |                             |             |
|                    |            |       |                |                |             |                                  |                         |         |                         |                               |                                        |        |                                                  |          |               |                         |              |                             | -           |
|                    |            |       |                |                |             |                                  |                         |         |                         |                               |                                        |        |                                                  |          |               |                         |              |                             | -           |
|                    |            |       |                |                | <u> </u>    |                                  |                         |         |                         |                               |                                        |        |                                                  |          |               |                         | 1            |                             | -           |
|                    |            |       |                |                |             |                                  |                         | L       |                         |                               |                                        |        |                                                  |          |               |                         |              |                             |             |
| RELINQUISHED BY    | (Signati   | ure)  | DATE/TI        | ME ///         | NBY (Bigna  | ture)                            | ATE/TIME                |         | 16:3                    | O SA                          | MPLE                                   | RECE   | IPT                                              |          | LABORATO      | ORY NOTES:              |              |                             | _           |
| RELINQUISHED BY    | /Signal    | uro)  | DATE/TI        | L F U V        | D BY (Signa | <u> </u>                         | UY<br>DATE/TIME         |         |                         |                               |                                        |        | TAINER                                           |          |               |                         |              |                             |             |
| TILLING OISTIED BY | (Signal    | uie)  | שוניות         | ME MEGELVE     | ODI (Signa  | (016)                            | JA I E/ I IME           | L-      |                         |                               |                                        | _      | .S Y/N/N                                         | A        |               |                         |              |                             |             |
|                    |            | SAMDI | F DISDO        | SAL INSTRUCT   | IONS        |                                  | <del></del> -           |         | SEALS                   |                               |                                        |        | CO! D                                            | +        | -             |                         |              |                             |             |
| 11                 |            |       |                | sch [] Return  |             |                                  |                         |         | RECEI                   |                               | טטט כ                                  | ל.טאט. | LULU                                             | +        | $\dashv$      |                         |              |                             |             |



### TRANSGLOBAL ENVIRONMENTAL . GEOCHEMISTRY,

|                                                                                     | The state of the s |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT: SALC                                                                        | DATE: 9/24/94 PAGE / OF 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ADDRESS:                                                                            | TEG PROJECT #: 940919 CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PHONE: FAX:                                                                         | LOCATION: TEAD S. Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CLIENT PROJECT #: PROJECT MANAGER:                                                  | DATE OF 9/2 4/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Number Depth Time Type Container Type Que Que Que Que Que Que Que Que Que Qu | NOT Containers  Note Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                               | SS SS S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Number Depth Time Type Container Type Que Que Que Que Que Que Que Que Que Qu | Total Number Container Note Number Note Number Note Number Note Number Note Number Num |
| 330110 10 0741 WAR SYRINGS XX                                                       | // // // // // // // // // // // // //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3362 10 10 0758 11 11 XX                                                            | 100 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 03 10 10 08/3 11 11 XX                                                           | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 330410 10 0827 11 11 8 1                                                            | 100 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3305 10 (0 0840) (1 (1 )                                                            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 330610 10 0849 11 11 11 11                                                          | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 330610D 10 0900 11 (1 XX X                                                          | 100CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 330710 11 0920 11 11 XX                                                             | 100 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 330810 10 0934 11 11 11 11                                                          | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 330910 100948 11 " XX                                                               | 100 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 331010 101003 (1 " XX X                                                             | (00 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3311007 = 1024 (1 (1 )                                                              | 100 Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 12 10 10 1040 11 11 XX                                                           | (00 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 1220 20 1049 11 11 XX                                                            | 200 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 1307 7 1105 (1 C/KX X                                                            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33/400 10/123 11 "XV X                                                              | (00 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 15 10 (0 136 11                                                                  | (00 Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3316 10 10 1146 4 01 11                                                             | 100 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME             | SAMPLE RECEIPT LABORATORY NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BELINOUISHED BY (Signature) DATE(TIME DECEIVED BY (Signature))                      | TOTAL NUMBER OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DATE TIME                                                                           | CHAIN OF CUSTODY SEALS Y/N/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SAMPLE DISPOSAL INSTRUCTIONS                                                        | SEALS INTACT? Y/N/NA RECEIVED GOOD COND,/COLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                     | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Etcg

TRANSGLOBAL

Environmental Geochemistry,

| CLIENT:                      | 5A(            |                                       |                                                   |                                                   | ····                                             | DATE: 9/2                                         | 4/94                | PAG                | E                                                                                                               | 3_                         |
|------------------------------|----------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| ADDRESS:                     |                |                                       |                                                   |                                                   |                                                  | TEG PROJECT                                       | · # · · · Q         | 40919              | CM                                                                                                              |                            |
| PHONE:                       |                | FAX:                                  |                                                   |                                                   |                                                  | LOCATION: _                                       | (EA)                | ). <u>,</u> S      | , Area                                                                                                          |                            |
| CLIENT PROJECT #:            |                |                                       | ANACED                                            |                                                   |                                                  | COLLECTOR:                                        | Paul 11             | losher             | DATE OF COLLECTION                                                                                              | 9/24/4                     |
| CLIENT PROJECT # :           |                |                                       |                                                   |                                                   |                                                  | COLLECTOR:                                        | au h                | 107101             | به صنور النظام الأمان الأراب الماري المار |                            |
|                              |                |                                       | RHAT 3180                                         |                                                   | # 1                                              |                                                   |                     |                    | Volvme<br>w. Hohawn<br>FIELD NOTES                                                                              | Number<br>ntainer<br>atory |
|                              | Sample         |                                       | 12 8 8                                            |                                                   | \$\\\ 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\         | \\$\\\$\\\$\\\$\\\$\\\$\\\$\\\\$\\\\$\\\\$\\\\$\\ | [E]                 |                    | w.flowwir                                                                                                       | 1 Co                       |
| Sample Number Depth Ti       |                | Container Type                        |                                                   | 75/2/2/                                           | 7979                                             | 7×70/4/1                                          | 7-6-6               | <del>- { - {</del> | FIELD NOTES                                                                                                     | E O L                      |
| 331610D 10 11                |                | sgringe                               |                                                   | <del>                                      </del> | <del></del>                                      |                                                   |                     |                    | 100 cc                                                                                                          |                            |
| 331710 10 120                | 07 11          | <u> </u>                              | <del> </del>                                      | <del>                                     </del>  | <del>  </del>                                    |                                                   |                     | +                  | 100 (C                                                                                                          |                            |
|                              | 20 11          | el                                    | <del>- KAKA</del> I-                              |                                                   |                                                  |                                                   |                     |                    |                                                                                                                 |                            |
|                              |                | · · · · · · · · · · · · · · · · · · · | <del>                                     </del>  | <del>                                     </del>  |                                                  |                                                   |                     |                    | 100 cc                                                                                                          |                            |
|                              | 45 11          |                                       | <del>                                     </del>  | <del> - - (}- -</del>                             |                                                  |                                                   |                     |                    |                                                                                                                 | ···                        |
|                              | 50 4           |                                       | LXXI                                              | <del>                                     </del>  | <del> - -</del>                                  | <del></del>                                       |                     |                    | 100 cc                                                                                                          |                            |
|                              | 56 11          |                                       | <del>()</del> ()                                  | $H + \Theta +$                                    | +                                                |                                                   |                     | <del>- - </del>    | 100CC                                                                                                           |                            |
|                              | 17 11          | 11                                    | <del>KKK</del>                                    | <del>                                     </del>  |                                                  |                                                   |                     | <del></del>        | 200 CC                                                                                                          | ļ                          |
|                              | 24 11<br>40 (1 |                                       | XX                                                | <del>                                     </del>  | <del>  </del>                                    | <del>                                     </del>  |                     | <del> </del>       | 200 cc                                                                                                          |                            |
| 19172 <b>5</b> 25 14         | <del></del>    |                                       | 1                                                 |                                                   | +                                                |                                                   | <del></del>         | <del>-  </del> -   | 260 cc                                                                                                          | ļl                         |
| 191725 D 25 145              |                | .(                                    | <del>                                     </del>  | <del>                                      </del> | <del>                                     </del> | <del>                                     </del>  |                     | <del></del>        | 260 cc                                                                                                          | <del> </del>               |
| 191805 05 16                 |                | <u> </u>                              | <del>                                     </del>  | <del>                                     </del>  | +                                                |                                                   |                     | <del></del>        | 260 cc                                                                                                          |                            |
|                              | ·              | 4                                     | <del>                                      </del> | <del>                                     </del>  | + + -                                            |                                                   |                     | +                  | 100 CC                                                                                                          |                            |
| 191810 10 16<br>191815 15 16 | 2/ 1/          | ٠,                                    | ₩-                                                |                                                   | <del>                                     </del> |                                                   | <del> - - - -</del> |                    | 100 cc                                                                                                          |                            |
| 191820 20 16                 | 33 11          |                                       | 1818                                              |                                                   | † † -                                            |                                                   |                     |                    | 200 cc                                                                                                          |                            |
| 191825 25 16                 | 50 11          | <u>'</u>                              | 100                                               | 1/1/-                                             | +                                                |                                                   |                     |                    | 260 CC                                                                                                          |                            |
| 191 830 30 17                | 03 (1          | 11                                    |                                                   |                                                   | +                                                |                                                   |                     |                    | 260 (c                                                                                                          |                            |
| RELINQUISHED BY (Signature)  | DATE/TII       | ME A BECEIVE                          | D BY (Signaty                                     | re) / DATE/TIMI                                   | <del></del>                                      | SAMPLE                                            | RECEIPT             | 1i 1               |                                                                                                                 | LL                         |
|                              |                | Me Da Mosli                           | n %                                               |                                                   | D TO                                             | OTAL NUMBER OF                                    |                     |                    | SORATORY NOTES:                                                                                                 |                            |
| RELINQUISHED BY (Signature)  | DATE/TII       | ME RECEIVE                            | D BY (Signatu                                     | re DATE/TIM                                       |                                                  | HAIN OF CUSTODY                                   |                     |                    |                                                                                                                 |                            |
| Azz                          | IN 5 51555     |                                       |                                                   |                                                   |                                                  | EALS INTACT? Y/N                                  |                     |                    |                                                                                                                 |                            |
|                              |                | SAL INSTRUCT                          |                                                   |                                                   |                                                  | ECEIVED GOOD C                                    | OND./COLD           |                    |                                                                                                                 |                            |
| 11 TEG DISPOS                | AL @ \$2.00 ea | ch Beturn                             | □ Pickup                                          |                                                   | N/                                               | TES.                                              |                     | 1                  |                                                                                                                 |                            |



### TRANSGLOBAL ENVIRUNMENTAL GEOCHEMISTRY,

|                                    |                                                |             | ۰       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
|------------------------------------|------------------------------------------------|-------------|---------|----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|---------------|-----------|-----------------------------------------|----------------------------------------------------|---------------|-----------|-----|-------------------------------------------|----------|--------------|----------|-----------------------|-----------|--------------------------|---------------------------|
| CLIENT:                            |                                                | 5/          | HC      |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         | DA                                                 | TE:           |           | 7/2 | 4                                         | Q        | <del>-</del> |          | PAGE_3                | _ OF\     | 3_                       |                           |
| ADDRESS:                           |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>-</u> - |                                        |               |           |                                         | TE                                                 | G PR          | OJE       | T#  | · :                                       | 9        | 4            | <u>0</u> | 913 CM                |           |                          |                           |
| PHONE: FAX:                        |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           | LOCATION: (TEAD) S. Area                |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
| CLIENT PROJECT #: PROJECT MANAGER: |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               | co        | LLEC                                    | TOR:                                               | <u> </u>      | <u>/a</u> | الد | (                                         | M'c      | sher .       | DATE OF  | N 9/7.                | 4/9       |                          |                           |
|                                    |                                                |             | Sample  |                | AMAL OF S                                        | 5/0/6/0/<br>10/0/6/0/<br>10/0/6/0/<br>10/0/6/0/<br>10/0/6/0/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/0/6/<br>10/ | 20 20 20 X | 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ |               |           | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                    |               |           |     | /<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |              |          | Withdra<br>FIELD NOTE | ا<br>س ا  | tal Number<br>Containers | Laboratory<br>Note Number |
| Sample Number                      |                                                | <del></del> | Туре    | Container Type | (30/3                                            | 9/39/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /c3e/x     | 8 / Q                                  | / ?           | / & / <   | 7/24                                    | /8/                                                | \d^\/\        | \\$\/     | 18/ | 4                                         | 4        | 4            | 4        | FIELD NOTE            | <u>\$</u> | βō                       | L a                       |
| 191835                             | 35                                             |             |         | Syringe 11.    | XX                                               | <del>  - -</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -          | X                                      | <b>.</b>      |           | -                                       | _                                                  |               |           |     |                                           |          | -            |          | 260 c                 | <u>د</u>  |                          |                           |
| 191840                             | 40                                             | 1725        | ((      |                | HX                                               | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +          | X                                      |               |           |                                         |                                                    |               | -         |     |                                           | +-       | -            |          | 260 c                 | <u> </u>  |                          |                           |
|                                    |                                                |             |         |                | <del>  </del>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +-         |                                        |               |           | ╁╌╁                                     |                                                    | +             | $\vdash$  | -   | +                                         | -        | $\vdash$     |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +          |                                        |               |           | 1 1                                     | _                                                  |               |           | -   | +                                         | ╁┈       |              |          |                       |           | -                        |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _          |                                        | _             |           |                                         | -                                                  | 1             | $\Box$    |     |                                           | 1        |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _          |                                        | _             | _ _       |                                         | _ _                                                |               |           |     | 4_                                        |          | <u> </u>     |          |                       |           |                          |                           |
|                                    |                                                |             |         | <del></del>    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        | $\Rightarrow$ | 4         | -                                       | $\perp$                                            |               |           |     | - -                                       | -        |              | _        |                       |           | <u> </u>                 |                           |
|                                    |                                                |             |         |                | <del>  </del>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         | >-                                                 | $\downarrow$  |           | _   | +                                         | -        |              | $\dashv$ |                       |           | - <del></del>            |                           |
|                                    |                                                |             |         |                | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | $\left  \cdot \cdot \right $           | -+            |           | ╁┼                                      | +                                                  | +             | 1         |     | +                                         | +        | -            | -        |                       |           | -                        |                           |
| ·                                  |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +          | H                                      | $\dashv$      | _         | ++                                      |                                                    |               | -         | +   | +                                         | <b>-</b> |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +          | +                                      | -+            |           | ++                                      |                                                    | <del>- </del> |           | +   | -                                         | +-       |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           | 1                                       |                                                    | $\top$        |           | _   | 1                                         |          |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
|                                    |                                                |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           |                                         |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |
| RELINQUISHED BY                    | (Signati                                       | ure)        | DATE/TI | ME RECEIVE     | Meh                                              | gnature<br>A G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>Un 4  | DAT<br>V ty                            | TE/TII        |           | <u> </u>                                |                                                    |               | MP        |     |                                           |          |              | <u> </u> | LABORATORY N          | DTES:     |                          |                           |
| RELINQUISHED BY                    | (Signati                                       | ure)        | DATE/TI | ME RECEIVE     | D BY (Si                                         | gnalure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                        | TE/TI         | 730<br>ME | 1                                       |                                                    | NUM.          |           |     |                                           |          |              |          | -                     |           |                          |                           |
|                                    | •                                              | •           |         |                | - '                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I          |                                        |               |           | 1                                       | CHAIN OF CUSTODY SEALS Y/N/NA SEALS INTACT? Y/N/NA |               |           |     |                                           |          |              |          |                       |           |                          |                           |
|                                    |                                                |             |         | SAL INSTRUCT   | IONS                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               |           | 1                                       | RECEIVED GOOD COND./COLD                           |               |           |     |                                           |          |              |          |                       |           |                          |                           |
| Cl                                 | ☐ TEG DISPOSAL @ \$2.00 each ☐ Return ☐ Pickup |             |         |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                        |               | NO        | NOTES:                                  |                                                    |               |           |     |                                           |          |              |          |                       |           |                          |                           |

Leg

TRANSGLOBAL

ENVIRONMENTAL

GEOCHEMISTRY,

|                 |                                       | a T     |             |               |                                            |                                        |                                         |          |                         |                    |                                                  |                                                  | <del>\ /</del> 2 | -7       | <u> </u>   |             |         | /           | -            |                        |
|-----------------|---------------------------------------|---------|-------------|---------------|--------------------------------------------|----------------------------------------|-----------------------------------------|----------|-------------------------|--------------------|--------------------------------------------------|--------------------------------------------------|------------------|----------|------------|-------------|---------|-------------|--------------|------------------------|
| CLIENT:         |                                       | SAL     | <u> </u>    |               |                                            |                                        |                                         |          |                         | م   _              | ATE:                                             | _9                                               | 1//              | 5/0      |            |             | GE      | / OF        | 1            |                        |
| ADDRESS:        |                                       |         | <del></del> |               |                                            |                                        |                                         |          |                         | _   T              | EG PR                                            | OJEC                                             | T#:              |          | H.         | <u>Q</u> 9/ | 901     |             |              |                        |
| PHONE:FAX:      |                                       |         |             |               |                                            |                                        |                                         |          |                         |                    | OCATI                                            | ON: _                                            | -                | TE       | H          | <u>D</u>    | , SH    | tea         |              | <del>/</del> -         |
| CHENT PROJE     | CLIENT PROJECT #:PROJECT MANAGER:     |         |             |               |                                            |                                        |                                         |          |                         |                    | OLLEC                                            | TOD.                                             |                  | Parl     | . <i> </i> | Yosh        | 01      | DATE OF     | , ?/         | 12494                  |
| OCILITY / 11002 | · · · · · · · · · · · · · · · · · · · |         |             |               |                                            | <i>G</i> /                             | 77                                      | 7,67     | <del>-</del>            | -                  | /2                                               | 7 7                                              |                  |          | <u> </u>   | 7 /         | / /     | COLLECTIO   | _            | <del>ة / -</del>       |
| 1               | ļ                                     | ·       |             |               | AMALY                                      | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |                         |                    |                                                  | \\$\\\\$\\\$                                     |                  | /5/      | //         | ///         | /\\A    | lume        | umb<br>grist | Laboratory Note Number |
| 1               | ; <b>1</b>                            |         | Sample      |               | AMA                                        | \$* <b>\</b> \$\                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |          |                         | \00\\8             | /3/3                                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\           |                  | 9/       | //         | ///         | / W     | ifdraw 1    | N La         | e Z                    |
| Sample Number   | Depth                                 | Time    | Type        | Container Typ | )e /30/                                    | 4 /0/<br>3/3/<br>3/3/                  | */&*/<\$^                               | (8) (8)  | 12/2                    | <u> </u>           | <u> </u>                                         | <u> </u>                                         | <i> \$</i> /     |          |            | //          | FIELD   | NOTES       | , c          | 기를 운                   |
| # 191905        | 5                                     | 0822    | Vapor       | syringe       | L X                                        |                                        | $\perp$                                 |          |                         |                    |                                                  |                                                  |                  |          |            |             |         | ) ((        |              |                        |
| 191905 P        |                                       | 0822    |             | 0 "           | Χý                                         |                                        | 1                                       |          | _   _                   |                    |                                                  |                                                  |                  |          |            |             |         | ٥رد         |              |                        |
| 191910          | 100                                   | 1       |             |               |                                            | 4                                      |                                         |          | $\perp \downarrow$      |                    |                                                  |                                                  |                  |          |            |             |         | ٥٥٥         |              |                        |
| 191915          | 15                                    |         |             |               | ×/                                         |                                        |                                         | 1        | $\perp \mid \perp \mid$ | $\perp \perp \mid$ | <u> </u>                                         | $\bot \bot$                                      |                  | <u> </u> |            |             |         | <i>احد</i>  |              |                        |
| 191920          | Te o                                  | 09/0    |             |               |                                            | 4                                      |                                         |          | _ _                     |                    | ļ <del></del>                                    |                                                  |                  |          |            |             |         | vcc         |              |                        |
| 191920          | 25                                    |         |             |               |                                            | 4                                      | X                                       | 4        | 11                      | $\perp$            |                                                  | $\bot \bot$                                      |                  |          | 11         |             |         | ی در        |              |                        |
| 191930          | 30                                    | 1957    |             |               |                                            | 1                                      |                                         |          | _ _                     |                    |                                                  | $\perp \perp$                                    | $\bot$           |          | $\sqcup$   |             |         | 2 cc        | _            |                        |
| 191935          | 35/                                   | 011     |             |               | XX                                         | 4                                      | $\perp \downarrow \rangle$              | 1        | _                       |                    |                                                  |                                                  | $\perp$          |          | _          |             | 260     | 0 در        |              |                        |
| 191940          | 40                                    | 1030    |             |               |                                            |                                        |                                         | 41       |                         |                    | <u> </u>                                         | $\perp \downarrow$                               | $\bot$           | <u> </u> | 11         |             |         | ٥،د         | .            |                        |
| 192605          |                                       | 1055    |             |               | XY                                         | 4                                      | $\perp \downarrow \rangle$              | 4        |                         |                    | <del>-   -</del>                                 | $\bot \bot$                                      |                  | <u> </u> | 1-1        |             | 100     |             |              | -                      |
| 192610          |                                       | 1103    |             |               | $- \chi \rangle$                           | 44                                     | _ _  <i>\</i>                           | 4        | _ _                     |                    |                                                  | $\bot \bot$                                      |                  |          | 1.1        |             |         | OCC         |              |                        |
| 192615          |                                       | 1123    |             |               | \X\\                                       | 44                                     | _ _ }                                   | ⊈        |                         | $\dashv$           | <b></b>                                          | $\bot \bot$                                      |                  |          | 14         | _           |         | ر ح         |              |                        |
|                 | ~                                     | 1147    |             |               | <u>{                                  </u> | $\frac{1}{1}$                          |                                         | 44       | 44                      |                    | <del>                                     </del> | <del>                                     </del> |                  |          |            |             |         | ) ر د       | -            |                        |
|                 |                                       | 1229    |             |               | <u> </u>                                   | 컨井                                     | _ _ _}                                  | 4        |                         |                    | <b> </b>                                         | <del>                                     </del> |                  |          | 1_1        |             | 100     | ) CC        |              |                        |
| 197710          | 10                                    |         | ·           |               | N/A                                        | \$-1                                   | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  | :4-1-    | 4-1                     |                    |                                                  |                                                  |                  |          | -          |             |         | <i>ی</i> در | i .          | ] ]                    |
| 192715          | 15                                    |         |             |               | K X                                        | #                                      | $\bot$ $\not$                           | *- -     | -                       | $\perp$            | <del> </del>                                     | - -                                              |                  |          | -          |             | 200     |             |              |                        |
| 1926 (5 D       |                                       |         |             |               | X X                                        | <u> </u>                               | 1                                       | 44       |                         |                    |                                                  | $\bot \bot$                                      |                  |          | 11         |             | 200     | CC          |              |                        |
| £ 2592720       | 20 1                                  | /308    | 2475.01     | A.            | Vo                                         | 1 1                                    | N X                                     | 1 - 1    | ┷┪                      |                    |                                                  |                                                  |                  |          |            |             | 70°C    | 2 CC        |              | _[!                    |
| RELINQUISHED BY | (Signatur                             | e)      | DATE/TII    | ME / JIEGE    | Mosk                                       | šignaturi<br>M                         | e) 4759                                 | ATE/TIM  | 600                     |                    |                                                  | AMPL                                             |                  |          |            |             | ABORATO | ORY NOTES:  |              |                        |
| RELINQUISHED BY | (Signatur                             | re)     | DATE/TII    | ME RECE       | IVED BY (S                                 |                                        | e) [                                    | DATE/TIN |                         |                    | L NUM                                            |                                                  |                  |          |            | 11          |         |             |              |                        |
|                 | ` •                                   | •       |             |               |                                            | -                                      | •                                       |          | "-                      |                    | <u>N OF C</u><br>S INTA                          |                                                  |                  |          | /N/IVA     |             |         |             |              |                        |
|                 | S                                     | AMPLI   | E DISPO     | SAL INSTRU    | CTIONS                                     |                                        |                                         |          |                         |                    | IVED O                                           |                                                  |                  |          | D          |             |         |             |              |                        |
| 11              | TEG DISF                              | POSAL @ | \$2.00 08   | ich 🗀 Retur   | n 🗆 Pi                                     | ckup                                   |                                         |          |                         | NOTES              |                                                  |                                                  | -                |          |            |             |         |             |              |                        |



### TRANSGLODAL ENVIRONMENTAL GEOCHEMISTRY,

| CLIENT:SALC                         |                                              | DATE: 925/94<br>TEG PROJECT #: 94.09/             | PAGE 2 OF )                |
|-------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------|
| PHONE:                              | FAX:                                         | LOCATION: TEAD S                                  | AREA                       |
| CLIENT PROJECT #:                   | PROJECT MANAGER:                             | - COLLECTOR: Agul Mosh                            | er DATE OF 9/24/24         |
| Sample Number   Depth   Time   Type | Container Type                               |                                                   | Total Number Of Containers |
| 192725 25 1320 VAA                  | R SURINGS YTY                                |                                                   | 260cc<br>260cc             |
|                                     | -+                                           | <del>                                      </del> | 200 cc                     |
| 330120 20 1412 1<br>30520 20 1438 1 |                                              |                                                   | 200 CC                     |
| 33/620 20/532 11                    |                                              |                                                   | 200 cc                     |
| 37,000                              |                                              |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     |                                              | <del>                                     </del>  |                            |
|                                     |                                              | <del>                                      </del> |                            |
|                                     | +                                            |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     |                                              |                                                   |                            |
|                                     | 4                                            | <del>                                     </del>  |                            |
| RELINQUISHED BY (Signature) DATE    | TIME PACK WED BY (Signature) DATE/TIME       | SAMPLE RECEIPT                                    |                            |
|                                     | TUTUMKER 9725/a4 1600                        | TOTAL NUMBER OF CONTAINERS                        | LABORATORY NOTES:          |
| RELINQUISHED BY (Signature) DATI    | TIME RECEIVED BY (Signature) DATE/TIME       | CHAIN OF CUSTODY SEALS YININA                     |                            |
| CAMPI F DIO                         | POSAL INSTRUCTIONS                           | SEALS INTACT? YININA                              | _                          |
| SAMPLE DIS                          | POSAL INSTRUCTIONS Deach [] Return [] Pickup | RECEIVED GOOD COND./COLD NOTES:                   |                            |

Etcg

TRANSGLOBAL

ENVIRONMENTAL GEOCHEMISTRY,

| CLIENT:         |             | 5A(          |         |                |                                                         |                                             |                                                   |                         | DATI    |                                         | 120/9    | 0.11     |    | PAGEOF             |                                       |
|-----------------|-------------|--------------|---------|----------------|---------------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------|---------|-----------------------------------------|----------|----------|----|--------------------|---------------------------------------|
| ADDRESS:        |             |              |         |                |                                                         | <del></del>                                 |                                                   |                         |         | ATION:                                  | CT #:    | EA       | -D | S. Avea            |                                       |
|                 |             |              |         | FAX:           |                                                         |                                             | <del>-,</del>                                     |                         |         |                                         |          | W        | () | DATE OF COLLECTION | 9/20/94                               |
| CLIENT PROJE    | CT #:_      |              |         | PROJECT M      |                                                         |                                             | · · · · · · · · · · · · · · · · · · ·             |                         |         | ECTOR:                                  |          |          | 08 |                    |                                       |
|                 |             |              | Sample  | C I            | 10, 10, 10<br>4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 | 0 3 6 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2          |                         |         | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |          |    | Withdraw (         | Total Number Of Containers Laboratory |
| Sample Number   |             |              | Type    | Container Type | VX                                                      | 73/^                                        |                                                   | 7 1                     | YY      |                                         | 7        |          |    | 100 CC             | [ ] [ ] [ ]                           |
| 192805          | 5           | 0847         | 1000    | syringe        |                                                         |                                             |                                                   |                         | ++-     |                                         | +++      |          |    | 100 cc             | - 1                                   |
| 192805D         |             | 09/6         | -,,     |                | YX                                                      |                                             | K                                                 | 11                      |         |                                         |          |          |    | (00cc              |                                       |
| 192815          |             | 0525         | . , ,   | '\             | XX                                                      |                                             | X                                                 |                         |         |                                         |          |          |    | Zeocc              |                                       |
| 192820          |             | 0937         | CI      | 6.1            | XX                                                      |                                             | X                                                 |                         |         |                                         |          |          |    | 700 cc             |                                       |
| 192825          |             | 0147         | (       | ٠(             | XX                                                      |                                             | M                                                 |                         |         |                                         |          |          |    | 200 CC             |                                       |
| 192830          | 30          | 1000         | ιι      | , (            | 120                                                     |                                             |                                                   |                         |         |                                         |          |          |    | 260 CE             |                                       |
| 192835          | 35          |              | 11      | 1(             | XX                                                      |                                             | 14                                                |                         |         |                                         |          |          |    | 260 CC             |                                       |
| 192840          | 40          | 1022         | 1(      | 4              | XX                                                      |                                             |                                                   |                         |         |                                         | -        |          |    | 260 cc             |                                       |
|                 |             |              |         |                |                                                         | -                                           |                                                   | -                       |         |                                         |          |          | -  |                    |                                       |
|                 |             |              |         |                | ++-                                                     |                                             | -                                                 |                         |         |                                         |          |          |    |                    |                                       |
|                 |             |              |         |                | ++-                                                     |                                             |                                                   | $\vdash$                |         |                                         |          |          |    |                    |                                       |
|                 |             |              |         |                | <del></del>                                             |                                             |                                                   | $\downarrow \downarrow$ |         |                                         |          | - -      |    |                    |                                       |
|                 |             |              |         |                | +++                                                     |                                             |                                                   | ++                      |         |                                         |          |          |    |                    |                                       |
|                 |             | <del> </del> |         |                | 111                                                     |                                             |                                                   | +                       |         |                                         |          |          |    |                    |                                       |
|                 | ·           |              |         |                | +                                                       |                                             | <del>  -                                   </del> |                         |         | - -                                     |          |          |    |                    |                                       |
|                 | İ           |              |         |                | 1 1 -                                                   |                                             |                                                   |                         |         |                                         |          |          |    |                    |                                       |
| RELINQUISHED BY | (Signal     | ure)         | DATE/T  | ME SELVI       | D BK (Signati                                           | ие)                                         | DATE/TIMI                                         |                         |         |                                         | LE RECEI |          |    | LABORATORY NOTES:  |                                       |
| RELINQUISHED BY | Signat      | uro)         | DATE/T  | IME DECEIVE    | D BY (Signati                                           | (-26-                                       | TATE/TIM                                          |                         |         |                                         | OF CONT  |          | 7  |                    |                                       |
| RELINGUISHED BY | (Signat     | urej         | UNIET   | THE THEOLIVE   | D. (Olgilal                                             | <b>-,</b>                                   | DATETIM                                           | -                       | CHAIN C |                                         | DDY SEAL | 5 Y/N/N/ | 4  |                    |                                       |
|                 | · · · · · · | SAMPL        | E DISPO | SAL INSTRUCT   | TIONS                                                   |                                             |                                                   | <u>'</u>                |         |                                         | COND./   | COLD     |    |                    |                                       |
| ļ               |             |              |         | och [] Return  |                                                         |                                             |                                                   |                         | NOTES:  |                                         |          |          |    |                    |                                       |

| Daily Log                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:                                                         | 9/19/5/ Job Name or Number: 940919 SP8 (CM                                                                                                                                                                                                                                                                                                                                                                       |
| Time                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6740<br>1972<br>1070<br>1070<br>1070<br>1170<br>11755<br>1830 | AFRIVAL AT MAIN (IATE - CLIENT 195T PRESENT.  FOUND JOIN (SAIC) PENUNCTION  BADINES - MAIN GATE & MESH FT TSS: PER DIE:  RESP. TEST - DRIVE TO ANOTHER SUIG  MAKE TEST - IN - IN SITE  SITE CRICALATION - ON SITE  START ARBING  THUSS WILM SUIDING OFC. WIDLAYDE I WATT FOR GLADKS  DROP MAST - LIGHTMANG NEARBY THUNDER HEADS  START SAMPLING AGAIN  START SAMPLING AGAIN  FORD READY - WANT FOR JAB  OFF 5 TE |
|                                                               | 16 striples Taken                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Completed E                                                   | By (print)  Date                                                                                                                                                                                                                                                                                                                                                                                                 |

Strataprobe
Soil Gas Sampling Field L

svfldlog.xis

De <u>4/3/34</u>

Page \_\_\_\_ of \_\_\_\_\_

Site Name: TOELE SOUTH APER

TEG Project #: 9 409/9 CM

Site Location: TOELLE S., UTAH

Operators: <u>JASON</u>

Client: SAIC

Strataprobe #: SP8

Field Reps: JOHN P. JOE

Weather: SIN / IJAGIN 7 THILLEN STERM

|                   |       |      | 7         | ,                  |       | ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>           |
|-------------------|-------|------|-----------|--------------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 19-01 - Sample ID | Depth | Time | Soil Type | Soil gas flow/draw | Odoir | New tubing | SG Volume purged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks               |
| 19-01-            | 5     | 1219 | Λ.        | ÉES                | ¥     | >          | S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 10-61 10-61       | 0/    | (27) | Λ.        | (,300)             |       |            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HARD AT 9'-BUNNER!    |
| 12-01             | 0     | 1500 | ^         | h dish             |       |            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 10/21             | P     | 55   | ٧,        | rap                |       |            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | SUFT AT- 16           |
| 18.01             | 3.    | 328  | ۸.        | اديها              |       | 4          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARD AT Z3            |
| 15.01             | 30    | 1346 | 7         | 6301               |       | 1          | 7,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| 35-               | 15.5  | My   | 1         | Villand Villand    |       | 4          | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 12 67             | W     | 1200 | ^,        | 11.710             |       | 4          | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| a 07              | 4     | 150) |           | 6047               | ·     | H          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| 1601              | 10    | 1541 | ?         | Pool               |       | 1          | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4000 ATT' REF. 65 10" |

·Page 1

FOR IS

Strataprobe
Soil Gas Sampling Field L

svfldlog.xls

Dar <u>9/16/94</u>

Page \_ \_ \_ of \_ \_ \_

Site Name: TOELE SOUTH AREA

TEG Project #: 9 409/9 CM

Site Location: TOEZLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: THY TOO

Weather: THUNDAY = FIRS / -- I COME

|             |       |      |           |                    |      |            |                  | .'                                |
|-------------|-------|------|-----------|--------------------|------|------------|------------------|-----------------------------------|
| Sample ID   | Depth | Time | Soil Type | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks                           |
| 11 02       | 10    | 1555 | 7.        | 7                  | 7    | /          | /                | NEW HOTE N/S                      |
| 19.52       | 15    | 1613 | (°        | Good               | 2    | 4          | bo               | NEW HOLE-GOT<br>THROUGH THIS TIME |
| 19-52       | 20    | 1,24 | 7.        | Good               | N    | 4          | .200             |                                   |
| 15-02       | C     | 1638 | 7         | LOUD               | 7    | 4          | iw               |                                   |
| 19.02<br>38 | 38    | 167  | ί,        | Coen               | 2    | -2         | 260              |                                   |
| 19-02       | 35    | ,710 | 7         | huco               | N    | MY         | 260              |                                   |
| 19-02       | i40   | 1719 | ?         | 400D               | N    | Y          | 260              |                                   |
|             |       |      |           |                    |      |            |                  |                                   |
|             |       |      |           |                    |      |            |                  |                                   |
|             |       |      |           |                    |      |            |                  |                                   |

| Daily Log     |                                                                                                                                   |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|---|
| Date: 9/==    | 1-4 Job Name or Number: 940919 5.28                                                                                               |   |
| Time          |                                                                                                                                   |   |
| 0655          | READ TO SANGE - MATTERS AND 144                                                                                                   |   |
| <u> </u>      | Took 1 = SAMALE - CALL ME GC MARIN = STORY                                                                                        | _ |
| 1640          | AFRICA ADETE<br>READY TO SAMPLE - CONTY WE GO WATTING = STOW<br>READY FOR MET HAVE - DECKE TO PARK UP ELE<br>- WORLD THE TOO LAND | _ |
| 1730          | 1-20 5-6 THE 100 CAND                                                                                                             |   |
| <u></u>       |                                                                                                                                   | _ |
|               | 19 DUPLICATES                                                                                                                     | _ |
|               |                                                                                                                                   | _ |
|               | / NO DRAW                                                                                                                         | _ |
|               |                                                                                                                                   | - |
|               |                                                                                                                                   | _ |
|               |                                                                                                                                   | _ |
| <del></del> · |                                                                                                                                   |   |
|               |                                                                                                                                   | _ |
|               |                                                                                                                                   | _ |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   | _ |
|               |                                                                                                                                   |   |
| <del></del>   |                                                                                                                                   | _ |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   | _ |
|               |                                                                                                                                   |   |
|               |                                                                                                                                   | _ |
| <del></del>   |                                                                                                                                   | _ |
|               |                                                                                                                                   |   |
| JA. 2         | <del> </del>                                                                                                                      |   |
| Completed By  | (print) Date                                                                                                                      |   |
|               |                                                                                                                                   |   |

Strataprobe
Soil Gas Sampling Field Lt.

svfldlog.xls

Dat  $\frac{9/20/34}{}$ Page  $\frac{1}{2}$  of  $\frac{7}{2}$ 

Site Name: TOELE SOUTH APER

TEG Project #: 9409/9CM

Site Location: TOELE S. UTAH

Operators: <u>JASON</u>

Client: SAIC

Strataprobe #: SP8

Field Reps: JOHN = TOR

Weather: 500 August

|                               |               |       |      | _            |                    |             |            |                  |                                                           |
|-------------------------------|---------------|-------|------|--------------|--------------------|-------------|------------|------------------|-----------------------------------------------------------|
|                               | Sample ID     | Depth | Time | Soil Type    | Soil gas flow/draw | Odor        | New tubing | SG Volume purged | Remarks                                                   |
|                               | 19-03<br>05   | 5     | 0829 | ٠.           | houn               | 7           | Y          | 1 <b>6</b> 0 cc  |                                                           |
|                               | 19-03         | 5     | 0851 | 7            | Gova               | ~           | 4          | <i>/3</i> 0      |                                                           |
|                               | 19-03         | io    | 0941 | 7            | houn               | $^{\wedge}$ | Ý          | 100              |                                                           |
|                               | 19-03         | 15    | 1064 | 7,           | GOOD               | N           | ¥          | 200              |                                                           |
| J                             | 19.03         | 20    | 1035 | ζ-           | 4500               | ~           | N          | 200              |                                                           |
| $\langle \mathcal{N} \rangle$ | 19-03         | 20    | 1100 | ٢)           | (100 N             | N           | ~          | 200              |                                                           |
|                               | 19-03         | 25    | 1143 | 7 ,          | Coen               | ~           | کې         | res              | GLOGGEN EPIT-<br>foll out + GOBACK<br>IN to 25'- NEW HILE |
|                               | 19-03<br>13:0 | 30    | 1210 | <i>f</i> · · | bein               | N           | λ          | 260              |                                                           |
|                               | 135           | 35    | 1225 | ( (          | [16.               | ^/          | Ý          | 7.60             |                                                           |
|                               | 2-37<br>40    | પત    | 1246 | 7            | D                  | 2.          | V          | 260              | 100 7/841                                                 |

Strataprobe
Soil Gas Sampling Field L.,

svíldlog xis

Dat \_\_\_\_\_ of \_\_\_\_

Site Name: TOELLE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP 8

Field Reps: JOHN THE

|    | Sample ID    | Depth | Time | Soil Type | Soil gas flow/draw | Odor   | New tubing | SG Volume purged | Remarks          |
|----|--------------|-------|------|-----------|--------------------|--------|------------|------------------|------------------|
|    | 19-03        | 45    | 1300 | 7         | 6000               | N      | Ý          | 52               |                  |
|    | 19-03<br>50  | 50    | 1317 | 7         | SLOW               | ,/     | 4          | 5 ₹O             |                  |
|    | 19-04        | 5     | 1348 | · .       | 400                | N      | 2          | 100              |                  |
|    | 10           | 10    | 1351 | ٦.        | GOW                | N      | N          | 160              |                  |
|    | 19-64<br>15  | 15    | 1412 | 7<br>·    | hour               | $\sim$ | Y          | 260              |                  |
|    | 19-04<br>ZV  | 20    | 1419 | 7<br>·    | i<br>ban           | N      | N          | 700              |                  |
| ול | 19 34<br>20D | ZU    | 1436 | 7         | húoo               | N      | N          | 706              |                  |
|    | 7 (of<br>25  | 25    | 1505 | 7.        | GOD                | Ņ      | 1/         | ?00S             | KEEMPS PR- 4110- |
|    | 19-64<br>30  | 30    | 1518 | ٦         | Gow                | N      | V          | 260              |                  |
|    | 1904<br>35   | 55    | 1.71 |           | gard               | ٨      | 4          | 26)              | 5000 - 10        |

Da' <u>2.23</u>

Page \_\_\_\_\_\_\_ of \_\_\_\_\_\_\_

Site Name: TOELLE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC—

Strataprobe #: SP 8

Field Reps: TO-10 TO2

| rieiu ne    | sps   | 10- P |           | <del></del>        |               | vveaule    | r. <u> </u>      | , <del></del> |
|-------------|-------|-------|-----------|--------------------|---------------|------------|------------------|---------------|
| Sample ID   | Depth | Time  | Soil Type | Soil gas flow/draw | Odor          | New tubing | SG Volume purged | Remarks       |
| 15.04<br>40 | 40    | 1539  | 5         | gand               | $\mathcal{N}$ | 4          | ZEO              |               |
| 19-04       |       | 1557  | · ·       | goul               | N             | 1          | 540              |               |
| 19-04<br>50 | 50    | 1612  | ?         | gred               | 7             | Y          | 32 <sub>0</sub>  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |
|             |       |       |           |                    |               |            |                  |               |

| Daily Log        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Date:            | Job Name or Number: 9409195PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| Time             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| c650             | Aprilled the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first |   |
| CXX.             | LINE THOUGH A THE REST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ |
| 1720             | OFF THE 32 SIMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|                  | 1 N2 DONW<br>1 N2 DONW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                  | 1 Not and was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  | 3 DUPLICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| *****            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ASON Completed B | Date Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

Strataprobe
Soil Gas Sampling Field L\_\_\_\_

svfldlog.xls

Site Name: TOELE SOUTH APER

TEG Project #: 9 409/9 CM

Site Location: TOELE S, UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: JOHN JJE

| Sample ID   | Depth      | Time             | Soil Type | Soil gas flow/draw | Odor     | New tubing | SG Volume purged | Remarks             |
|-------------|------------|------------------|-----------|--------------------|----------|------------|------------------|---------------------|
| 19-05<br>OF | 5          | 6729             | 7         | liceD              | Ν        | Y          | 100              |                     |
| 10          | 10         | 67:5             | <i>(</i>  | hair               | rJ       | N          | 760              |                     |
| 19-55       | <b>L</b> - | 675 <sup>1</sup> | -         | 64.0               | Ŋ        | 4          | 700              |                     |
| 1           | 70         | C807             |           | A Sign             | N        | N          |                  |                     |
| 19-05       | 25         | DE 19            | (; · .)   | 4163               | N        | N          | 700              |                     |
| 19-6        | 7.5        | 08-8             | 7         | 11/1               | N        | N          | 300              | STOPPED OF STATE OF |
| 19-06<br>05 | 4          | 392 <sup>5</sup> | ( .       | Grati              | N        | 7          | 100              |                     |
|             | )          | 397.7            | •         |                    | 11       | ,J         | (5)              |                     |
|             |            |                  |           | j. 6               | <i>,</i> | 7]         | · .              |                     |
| 7 X         | . ,        |                  | -         | 1                  | Z.       | . 1        | \                |                     |

Strataprobe
Soil Gas Sampling Field Lug

svfldlog.xls

Site Name: TOELE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOELLE S., UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SPS

Field Reps: 5000 J.C.

| <del>,</del> |       |      |           |                    |          |            | ,                | <u> </u> |
|--------------|-------|------|-----------|--------------------|----------|------------|------------------|----------|
| Sample ID    | Depth | Time | Soil Type | Soil gas flow/draw | Odor     | New tubing | SG Volume purged | Remarks  |
| 15 TS        | 35    | 1006 | 7.        | lesso              | 7        | N          | 200              |          |
| 30           | 30    | 1019 | 7         | good               | N        | N          | <i>दे र</i> ०    |          |
| 15-06<br>39  | 35    | 1044 | ;         | <del>1</del> 1441  | N        | MY         | 370              |          |
| 40           | 40    | 1/01 | 7         | T16:               | <i>\</i> | 4          | 370              |          |
| 19.07        | 5'    | 1128 |           | boxD               | 7        | N          | (00)             |          |
| 19-57<br>10  | 10    | 1136 | ۲۰        | 40cm               | 7        | 2          | 100              |          |
| 19-07        | 15    | 1142 | J         | Geril              | 2        | 7          | 200              |          |
| £ 07         | 15    | :151 | ٠ ح       | 2370               | 7        | И          | 700              |          |
| 70           | 10    | CX   | `         | be to              | N        | N          | 700              |          |
| -            |       | 1.70 |           | 5000               | Ν        | N          | ć                |          |

Da  $\frac{9/2/54}{}$ Page  $\frac{3}{2}$  of  $\frac{4}{}$ 

Site Name: TOELLE SOUTH APER

TEG Project #: 9 409/9 CM

Site Location: TOELLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: 70 Jac

Weather: Sur wing

| Sample ID   | Depth      | Time | Soil Type                | Soil gas flow/draw | Odor        | New tubing            | SG Volume purged | Remarks           |
|-------------|------------|------|--------------------------|--------------------|-------------|-----------------------|------------------|-------------------|
| 19-07       | 30         | 1243 | ד                        | T16 F/             | N           | p/                    | 320              |                   |
| 19.07       | 35         | 1300 | 7                        | NO<br>Seew         | 2           | У                     |                  | contest<br>comple |
| 40          | K)         |      |                          | (xeD               | N           | $\sim$                | 370              |                   |
| 19-08<br>05 | 05         | 1341 | 7                        | 60N                | $^{\prime}$ | N                     | 100              |                   |
| M-CE        | <i>1</i> 6 | 1547 | P                        | born               | 7           | 7                     | 106              |                   |
| 19-08<br>15 | 15         | 1405 | f>                       | 4000               | 7           | 7                     | 200              |                   |
| 19-56       | 7ò         | 1414 | <i>j</i> \(\frac{1}{2}\) | ban                | N           | 7                     | <sub>5</sub> 65  |                   |
| 11. 4       | /          | :122 | ?                        | heso               | d           | N                     | <i>7</i> 0       |                   |
| 10-08<br>30 | 72 ·       | 144g | -,                       | 7:1                | . ✓         | <b>^</b>              | 370              |                   |
| /           | - )        | -ندم | ·                        |                    | , j         | $s_{s}^{\frac{1}{2}}$ | 570              |                   |

| Site Name: TOELLE SOUTH APEA   | TEG Project #: <u>9 409/9 CM</u> |
|--------------------------------|----------------------------------|
| Site Location: TOEZLE S., UTAH | Operators: JASON                 |

Client: SAIC Strataprobe #: SP 8

Field Reps: 50 / 50C Weather: 5 Weather: 5

| a      |                                         | /draw                                            |                                                                         |                                                                                       | 8                                                                                     | ·                                                                                                               |
|--------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| im     | Soil Type                               | Soil gas flow/draw                               | Odor                                                                    | New lubing                                                                            | SG Volume purged                                                                      | Remarks                                                                                                         |
| 1512   |                                         |                                                  |                                                                         | N                                                                                     | رية ج                                                                                 |                                                                                                                 |
| 0 1524 | 7                                       | 71411                                            | N                                                                       | N                                                                                     | SIC                                                                                   | me per charactery.                                                                                              |
| 1650   | -                                       | Goets                                            | ~                                                                       | ~                                                                                     | 100                                                                                   |                                                                                                                 |
| 1617   | ſ                                       | 5000                                             | 2                                                                       | V                                                                                     | 100                                                                                   | EAR CLESSED - MARE<br>South ASKAL                                                                               |
| 1629   | 7                                       | hoca                                             | N                                                                       | ~                                                                                     | 200                                                                                   | WHITE DUMPPOUNCE                                                                                                |
| 1649   | 7.                                      | 450D                                             | ک                                                                       | 7                                                                                     | 780                                                                                   | ·                                                                                                               |
| 5 164) | フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ly d D                                           | N                                                                       | N                                                                                     | 2 <b>6</b> 0                                                                          | REF. AT 24.5° WILL TAKE SEMBLE here                                                                             |
|        |                                         |                                                  |                                                                         |                                                                                       |                                                                                       |                                                                                                                 |
|        |                                         |                                                  |                                                                         |                                                                                       |                                                                                       |                                                                                                                 |
|        |                                         |                                                  |                                                                         |                                                                                       |                                                                                       |                                                                                                                 |
|        | 0 1524<br>1650<br>1618<br>1629          | 1512 :<br>0 1524 ?<br>1600 :<br>1617 ?<br>1629 ? | 1512 71417<br>1524 7 71417<br>1600 7 6007<br>1618 7 6007<br>1649 7 6007 | 1512 : 7:41- N<br>0 1524 ? TIGHT N<br>1600 : 6001 N<br>1618 ? 6000 N<br>1649 ? 6000 N | 1512 : 71617 N N  1524 ? 71617 N N  1600 : 6000 N N  1618 ? 6000 N N  1649 ? 6000 N N | 7 1512 : 71617 N N 32C  0 1524 ? 71617 N N 32C  1600 : 6001 N N 100  1617 ? 6001 N N 200  1649 ? 6001 N N Y 200 |

| Daily Log           |                                        |                                        |                 |       |             |             |
|---------------------|----------------------------------------|----------------------------------------|-----------------|-------|-------------|-------------|
| Date:               | 9/23/44                                | Jol                                    | o Name or Numbe | er: 5 | 409(9       | 5P8         |
| Time                |                                        |                                        |                 |       |             |             |
| <u>0550</u><br>1730 | ARFINE DIS<br>18+ SITE                 | •                                      | SANARS T        | , F2. |             |             |
|                     |                                        | <u> </u>                               | DUPLICATE       | 5     |             |             |
|                     | Su                                     | netes                                  | Ferl INFO       | ىبرى  | (2 EF-15 A) | - (         |
|                     |                                        | 4075                                   | of 129.150      | l 70  | 1) A.f      |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     | ······································ | ······································ |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             |             |
|                     | -                                      |                                        |                 |       |             |             |
|                     |                                        |                                        |                 |       |             | <del></del> |
| Completed           | By (print)                             | Ž(_                                    | Date Date       | 2/54  |             |             |
|                     |                                        |                                        |                 |       |             |             |

Strataprobe
Soil Gas Sampling Field Log

svfldiog.xls

Site Name: TOELLE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOELLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #:\_\_ SP 8 \_\_\_\_\_

Field Reps: JOHN JOC

Weather: rod of I dowk

|              |       | <del>,</del> , |            | ·                  |        |            |                                             |                                                 |
|--------------|-------|----------------|------------|--------------------|--------|------------|---------------------------------------------|-------------------------------------------------|
| Sample ID    | Depth | Time           | Soil Type  | Soil gas flow/draw | Odor   | New tubing | SG Volume purged                            | Remarks                                         |
| 19-10        | 6     | 0730           | ?          | Cors               | $\sim$ | Ν          | 150                                         |                                                 |
| 19-10        | 10    | 0738           | >          | 6000               | 2      | 7          | (00                                         |                                                 |
| 19-10<br>15  | 15    | 0753           | 7          | Coch               | N      | کہ         | TOD                                         |                                                 |
| 19-10<br>150 | 15    | 0607           | 7          | for all            | لد     | N          | 200                                         |                                                 |
| 19-10<br>20  | Zo    | 0817           | 7          | bein               | ~      | ~          | 700                                         |                                                 |
| 17-10        | 25    | 08-27          | 7          | Loup               | لب     | Y          | Zest                                        | WHITE POWDER IN                                 |
| 19-10<br>38  | 30    | 0841           | ٢٠         | Gan                | ~      | 4          | 1000 NO NO NO NO NO NO NO NO NO NO NO NO NO | pswder                                          |
| 35           | 35    | <i>آ ۽</i> ڊن  | <i>?</i> · | GOOD               | VΙ     | 1/         | <del>120</del>                              | product                                         |
| /÷-1         | HJ    | 0905           | 7          | Loon,              | N      | 4          | <del>جی</del><br>235                        |                                                 |
| 19-11        | 5     | CG 410         | 7          | 259                | ٨      | ,N         | :00                                         | POT. M. 2<br>11 1 1000 2001<br>4 -124 Ac. Al. V |

Dat <u>2/34-</u>

Page \_\_\_\_ of \_\_\_

Site Name: TOELE SOUTH APER

TEG Project #: 9 409/9CM

Site Location: TOEZLE S. UTAIA

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: John John

Weather: 500 JUM

|              | ,     | 7            |              | <del></del>        |      |            | <del>,</del>     |                                   |
|--------------|-------|--------------|--------------|--------------------|------|------------|------------------|-----------------------------------|
| Sample ID    | Depth | Time         | Soil Type    | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks                           |
| 19-k         | 10    | 1004         | ٦            | good               | لم   | N          | 10<              | END ATTEMPT<br>WEST STRAGETTO 10' |
| 15-11        | 15    | 1013         | ٦,           | good               | 2    | V          | 720              |                                   |
| 19-11        | 20    | 1072         | 7            | gast               | N    | Ŋ          | 200              |                                   |
| 19-11        | 75    | <i>(65</i> ? | <del>ب</del> | TICHT              | Ŋ    | Y          | 200              |                                   |
| 19-i1<br>30  | 30    | 1055         | 7            | USRY<br>TIGHT      | 7    | 4          | 200              |                                   |
| 19-P<br>05   | 5     | 1131         | 7            | Goco               | 2    | 2          | 100              | ·                                 |
| 19-12<br>050 | 5     | 1138         | <i>P</i>     | G.501)             | 7.   | N          | 100              |                                   |
| 19-12        | 10    | 1155         | ?            | TIGAT              | Ŋ    | Υ          | 100              |                                   |
| 19-12        | (%    | 1257         | 7            | 6009               | 7    | 7.         | 190              |                                   |
| 14-12<br>70  | 20    | 122.1        | 7            | 6000               | Ņ    | M          | 280              |                                   |

Da \_\_\_\_\_

Page \_\_\_\_\_ of \_\_\_\_\_

Site Name: TOELLE SOUTH APER

TEG Project #: 9 409/9CM

Site Location: TOEZLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Weather: State Agrico

|     | <del></del>  | <del></del> | <del></del> |           | <del> </del>       |      |             |                  | <u> </u>                                   |      |
|-----|--------------|-------------|-------------|-----------|--------------------|------|-------------|------------------|--------------------------------------------|------|
|     | Sample ID    | Depth       | Time        | Soil Type | Soil gas flow/draw | Odór | New tubing  | SG Volume purged | Remarks                                    |      |
|     | 25           | 25          | 1:23 [      | 7         | Goun               | 2    | N           | 200              |                                            |      |
|     | 19-12<br>30  | 30          | 1246        | >.        | ে এনট              | N    | Ν           | 260              |                                            |      |
|     | 19-12<br>35  | 35          | 1255-       | ?         | 6000               | 2    | N           | 260              |                                            |      |
|     | 19-12        | 40          | 1315        |           | Goul               | И    | Ŋ           | 260              |                                            |      |
| Q . | 19-13        | 5           | 147b        | 5         | han                | N    | <i>,,</i> , | 100              |                                            |      |
|     | 19-13<br>05D | 5           | 1407        | , ر       | GOLD               | N    | μ/          | (00              |                                            |      |
|     | 19-15<br>10  | 10          | 1447        | 7         | Goel               | N    | Ŋ           | (00              |                                            |      |
|     | 15 B         |             | 1500        |           |                    |      |             |                  | PEF AT ()                                  | 25 P |
|     | 15 m         |             | ,311        |           |                    |      |             | •                | 125 20 11<br>700 475 15<br>744 2 270 746 U |      |
|     | 16.19        | G.G.        | -71         |           |                    | ·    |             |                  | 2127                                       |      |

Da <u>2/. c</u>

Site Name: TOELLE SOUTH APER

TEG Project #: 9 409/9 CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: John John

Weather: Wife W Wolf

|             |       |      |            |                    |      |            |                  | /                       |
|-------------|-------|------|------------|--------------------|------|------------|------------------|-------------------------|
| Sample ID   | Depth | Time | Soil Type  | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks                 |
| 19-70       | 5     | 1549 | ?          | Lean               | N    | Y          | 100              | ACROSS ST. (59, C YANG) |
| 19-w        | (0    | 1602 | 7.         | con                | N    | y          | 130              | corngup lon             |
| 19-70       |       | 1615 | _          |                    |      |            |                  | REF. AT 1162'           |
| 19-21       | 5     | 1634 | <i>(</i> , | Goio               | 7    | 4          | /ac              | WHITE BUDEN IN          |
| 19-21       | 10    | 1647 | >          | GOUN               | 7    | ١(         | (00              | ps: Ner . ~             |
| 19-W        |       | 1648 |            |                    |      | - ·-       |                  | RST, AT 11'             |
| 19-22       | 5     | 1701 | ?          | Gan                | N    | 4          | (10              |                         |
| 19-TZ<br>10 | Ø     | 1708 | 7.         | loc N              | N    | Y          | <br>√∂₃          |                         |
| 15-TC       |       | 1716 |            |                    |      |            |                  | FFF- 4T 11"             |
|             |       |      |            |                    |      |            |                  |                         |

| Daily Log     |                      |                                       |
|---------------|----------------------|---------------------------------------|
| Date:         | 9/23/34              | Job Name or Number: 9409195P8         |
| ·             | <del></del>          |                                       |
| Time          |                      |                                       |
| 020           | <del></del>          |                                       |
| 5705          | READY TO SOURSE      | •                                     |
| 0815          | Client ASRICED       | + 3 thus ME WIST HE WANTED            |
| <u>0815 -</u> | 0900 Soil GHS Souple |                                       |
| Oqui-         | 0930 So. 1 Shyle to  | See what we are hotting to Retire!    |
| 0950          | Am uf Puists         | client has Should as - assign         |
| 1015          | SHAPT WURK           | TO GU OVER HATA                       |
| /600          | Dove - WAIT          |                                       |
| 7000          | •                    |                                       |
| 1630          | Chart decades        | we should pick up Newsonow            |
| Duci          | OF SITE              |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               |                      |                                       |
|               | <del></del>          | <del></del>                           |
| <del></del>   | , <del></del>        |                                       |
|               |                      | · · · · · · · · · · · · · · · · · · · |
|               |                      |                                       |
| <del></del>   |                      |                                       |
| <del></del>   |                      |                                       |
| <del></del>   |                      |                                       |
| /             |                      | 1 (                                   |
| <b>/</b> \_   | KINI LEDES           | 2 4/23/54                             |
| Complete      | ed By (print)        | Date                                  |
|               |                      | 1                                     |
|               |                      |                                       |
|               |                      |                                       |

1. 11

svfldlog.xls

Site Name: TOELLE SOUTH APER

TEG Project #: 9 409/9CM

Site Location: TOEZLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: 10th 1000

Weather: / / / / / /

| Field Re    | eps:  | 250 <u> </u>  | <u></u>   |                    |            | Weathe        | er: <u>/-</u>    | <u> </u>                       |                              |
|-------------|-------|---------------|-----------|--------------------|------------|---------------|------------------|--------------------------------|------------------------------|
| Sample ID   | Depth | Time          | Soil Type | Soil gas flow/draw | Odor       | New tubing    | SG Volume purged | Remarks                        |                              |
| 15-23       | 5     | C819          | 7.        | gan                | 11         | Y             | 12               |                                |                              |
| 19-23       | 40    | 0823          |           |                    |            |               |                  | REF. AT 7'                     |                              |
| 19-3        | /     | OSH           |           |                    |            |               |                  | REF. ATT'                      |                              |
| 19.24       | 5     | 0845          | - >       | gac                | N          | $\mathcal{N}$ | 100              |                                |                              |
| K9.74       | 6     | 0856          | ·         | god)               | N          | ~             | kod              | Poubler in<br>In Time          | 70CF<br>Solsmake<br>L To see |
| 19-75       | 5     | 0934          | >         | 9co o              | N          | <i>ب</i> ہ    | 790              |                                | CAC HATTING                  |
| 19:25<br>19 | 10    | 0942          | 7         | good               | N          | کہ            | 100              | FRUT PIACON HIS-<br>NES. A+ 10 | (7100)                       |
| 19-14       | 5     | t <b>6</b> 31 | ``        | م<br>مناتج         | لم         | $\sim$        | <b>%</b> U       |                                |                              |
| M. 19<br>ガン | £∳    | 1921          | 7         | 7ea J              | <i>J.J</i> | N             | 100              | ·                              |                              |
| 10. Z       | /)    | 17,5          | ٠<br>ر    | 700                | μl         | N             | <i>(</i> )0      |                                |                              |

Strataprobe
Soil Gas Sampling Field Log

svfldlog.xls

Site Name: TOELE SOUTH AREA TEG Project #: 9409/9CM

Site Location: TOELE S. UTAH Operators: JASON

Client: SAIC Strataprobe #: SP 8

Field Reps: JOHN 300 Weather: Weather: 100

| Sample ID   | Depth          | Time  | Soil Type | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks |
|-------------|----------------|-------|-----------|--------------------|------|------------|------------------|---------|
| 19-14       | 15             | .1057 | 7         | very               | 2    | Y          | 200              |         |
| 19-14       | 20             | 1/06  | ?         | Ces                | 2    | N          | ZEW              |         |
| 15-14       | 25             | 1/18  | >         | 40.0               | 7    | 11         | %00              |         |
| F.4.        | المرا          | 1(33  | ?         | Cars               | 7    | \/         | 260              |         |
| 19-14<br>35 | 35             | 1148  | 7         | 7161 +             | 2    | Y          | 760              |         |
| 15 ×        | υ <sub>0</sub> | 1135  | ?         | hoce               | 11   |            | 130              |         |
| 10.16       | 5              | 126.  | · .       | Goess              | ٠ ل  | ~          | (30              |         |
| - 1         |                | :226  | 7         | Schio              | 7    | Ν          | , OU             |         |
| 15, 1       | J              | 125%  | 17.       | û                  | N    | $\sim$     | <u>3</u>         |         |
| 9. K        | 15             | 130-  |           | 6 )                | N    | \ \ \      | ಇ್ರು             |         |

Dat <u>9/23</u>
Page <u>7</u> of <u>7</u>

Site Name: TOELE SOUTH AREA TEG Project #: 9409/9CM

Site Location: TOELE S. UTAH Operators: JASON

Client: SAIC Strataprobe #: SP 8

Field Reps: 500 Weather: W 5

| Sample ID     | Depth | Time          | Soil Type | Soil gas flow/draw  | Odor | New tubing          | SG Volume purged | Remarks |
|---------------|-------|---------------|-----------|---------------------|------|---------------------|------------------|---------|
| 19-15         | 20    | 1314          | ۲.        | 904                 | 7    | N                   | 200              |         |
| 19-3          | 75    | <b>/3</b> 37  | 7         | Tight               | N    | 4                   | 200              |         |
| 19-15<br>30   | 30    | 1342          | 7         | 716AT               | N    | 7                   | 260              |         |
| 19-15<br>345  | 35    | 1358          | 7         | 716t <sup>i T</sup> | N    | 4                   | 260              |         |
| 19-15<br>40   | 40    | 1410          | ?         | 11605               | N    | Y                   | 760              |         |
| 19-16         | 5     | , <b>4</b> 00 | フ         | ල රංගා              | 7    | N                   | 100              |         |
| P.16          | 10    | 1505          | 7         | T16 ert             | 2    | $\dot{\mathcal{N}}$ | 100              |         |
| 16, 16        | ∖ŗ.   | 1570          | 7         | 160                 | 7    | Y                   | ~~ <b>6</b>      | pouda   |
| 15 - 16<br>20 |       | 15 75         | 7.        | 10011               | N    | Υ                   | 200              |         |
| 15-16<br>75   | 25    | 450           | 7)        | 1                   | 2    | VÎ.                 | ر ۲              |         |

Strataprobe
Soil Gas Sampling Field Log

svfldlog.xls

Dat <u>9/23</u>
Page <u>U of U</u>

Site Name: TOELLE SOUTH APER TEG Project #

TEG Project #: 9 409/9 CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps: 300 300

| Sample ID    | Depth       | Time | Soil Type | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks |
|--------------|-------------|------|-----------|--------------------|------|------------|------------------|---------|
| 15-16<br>250 | Depth Depth | 1600 | 7         | and                | N    | 4          | Z00)             |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             |      |           |                    |      | _          |                  |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             | •    |           |                    |      |            |                  |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             |      |           |                    |      |            |                  |         |
|              |             |      | 1         |                    |      |            |                  |         |

| Daily Log      |         |                |                          |
|----------------|---------|----------------|--------------------------|
| Date: 9        | 124/24  | Job Name or Nu | umber: <u>9407195,88</u> |
| Time           |         |                |                          |
| 0700           | ARRIVE  | ·.             |                          |
| <u>0730</u>    | 12 444  |                | TEDAY                    |
|                |         |                | 101249                   |
| 1800           | diparte |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
| <del></del> ,  |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
| <del></del>    |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
|                |         |                |                          |
| Completed By ( | (print) | Date           | <del></del>              |
|                |         | 2              | the date.                |
| _              |         |                |                          |

Strataprobe
Soil Gas Sampling Field Loy

svfldlog.xls

Dat <u>9/2-1/--</u>
Page <u>i</u> of <u>U</u>

| Site Name: TOELE SOUTH APER | TEG Project #: 9 409/9C |
|-----------------------------|-------------------------|
|-----------------------------|-------------------------|

Site Location: TOELLE S., UTAH Operators: JASON

Client: SAIC Strataprobe #: SPB

Field Reps: John Field Weather:

|               |       | ,                    |           |                    |      |            |                  |         |
|---------------|-------|----------------------|-----------|--------------------|------|------------|------------------|---------|
| Sample ID     | Depth | Time                 | Soil Type | Soil gas Ilow/draw | Odor | New tubing | SG Volume purged | Remarks |
| <b>33</b> -01 | 10    | 0741                 | 7         | 4000               | لہ   | Y          | 100              |         |
| 33-3L<br>10   | Ιυ    | 0802                 | 7         | que!               | 2    | 4          | 100              |         |
| 33-33<br>10   | 10.   | 0815                 | フ<br>·    | ga                 | 7    | 7          | 100              |         |
| 33-04<br>18   | 10    | 0879                 | 7.        | goeid              | N    | ٠ ٢        | સ્               |         |
| 55-05<br>10   | /o    | <b>8</b> 845         | ?         | 900                | N    | 7          | 100              |         |
| 53-06<br>10   | 10    | 0859                 | ٠.        | 200 m              | N    | ~          | 100              | ·       |
| 33-06<br>109  | 10    | 0990                 | ?         | gerof              | 7    | N          | ر<br>ن<br>د      |         |
| 33.c7<br>0    | 70    | 15.                  | *7        | 700 5              | N    | $\sim$     | 100              |         |
| ()            | 1:    | ત્ <del>વ</del> કર્મ | ٠,        | 9c.d               | 7    | N          | /30              |         |
| 55.00<br>)    | · )   | ८′ न∤ें              | •         | 1                  | 7    | N          | (37)             |         |

Date 9 3 4

Site Name: TOELLE SOUTH APER

TEG Project #: 9 409/9CM

Site Location: TOEZLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP8

Field Reps:

| Sample ID   | Depth | Time     | Soil Type | Soil gas flow/draw | Odor           | New tubing | SG Volume purged | Remarks     |
|-------------|-------|----------|-----------|--------------------|----------------|------------|------------------|-------------|
| 33-10       | 10    | 1004     | ?         | que                | N              | N          | 190              |             |
| 33-11<br>10 | T     | 1028     | <u>_</u>  |                    |                |            |                  | KORATY'     |
| 83-11<br>37 | 7     | 1024     | 7         | 90cd               | N              | N          | 100              | REST AT. 7' |
| 33-12       | 10    | 1040     | ٠,        | Secol              | 7              | Ν          | 100              |             |
| 33-12       | 20    | 1051     | 7         | gas                | N              | ~          | 200              |             |
| 33-13       | 7     | 1105     | ٠,        | gcor!              | N              | ~          | /06              |             |
| 33-14<br>10 | 10    | 1(24     | ſ·        | gue                | N              | 7          | છ                |             |
| 33-15<br>1J | Ō     | 1137     | ۲.        | gaal               | N              | 7          | (0)              |             |
| 75.10<br>70 | 10    | 7. t = 1 | ۲,        | go.                | 2              | 2          | 130              |             |
| <i>)</i>    |       | 11-11    | つ         | J. N.              | • ::-<br>• ::- | 7          | <sup>/</sup> ɔ') | -20         |

Strataprobe Soil Gas Sampling Field Log

svfldlog.xls

Dat \_\_\_\_\_\_ of \_\_\_\_

Site Name: TOELE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOEZLE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SPS

Field Reps: \_\_\_\_\_\_\_

| Sample ID    | Depth | Time " | Soil Type  | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks |
|--------------|-------|--------|------------|--------------------|------|------------|------------------|---------|
| 3'7-17<br>10 | 10    | 1208   | <i>f</i> · | goed               | N    | 7          | 100              |         |
| 93-18<br>10  | 10    | 223    | 17.        | good               | N    | N          | 100              |         |
| 54-41        | 11)   | 1235   | ۲.         | 4500               | لد   | ٨          | 100              |         |
| 33.20<br>10  | 10    | 745    | -/         | sac'               | N    | Ν          | 1eu              |         |
| 19-FT        | 5     | 135.   | 7          | 500c               | N    | ~          | 100              |         |
| 19-17<br>(U  | 10    | 1355   | ?          | 9001               | N    | N          | €                |         |
| 15.17        | 15    | 1418   | ?          | 9000               | N    | N          | 200              |         |
| 16-17<br>20  | 76    | 12     | 7          | gre-               | 14   | 11         | 7#Y              |         |
| 19-          | 25    | 1438   | 7          | ga.                | N    | Y          | 200              |         |
| //<br>(ごう_   | -     | الإلاي | 7          | - e !              | NJ.  | N          | 4%               |         |

Page \_\_\_\_\_ of \_\_\_\_

Site Name: TOELLE SOUTH APER

TEG Project #: 9409/9CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP 8

Field Reps:

|             | -ps   |       |                    |                    |      | vvcatric   |                  |                                                              |
|-------------|-------|-------|--------------------|--------------------|------|------------|------------------|--------------------------------------------------------------|
| Sample ID   | Depth | Time  | Soil Type          | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks                                                      |
| 19-17<br>30 | 29    | 1505  | · ·                | 900                | N    | У          | 200              | RET. AT 129' WILL TAKE 30' SKAPLE has THEY TO GO DESSENTE AT |
| 19-7<br>30  |       | 1550  | ۱۹۸۰ مه د مساد این |                    |      |            |                  | RET AN Eq. 7mm ATON                                          |
| 19-18       | 5     | 162   | 7.                 | 500c               | 7    | لد         | 100              |                                                              |
| 15-18       | 10    | 1611  | 7                  | 30a                | 7    | N          | 100              |                                                              |
| 15-18<br>15 | 15    | % 7.3 | 7                  | 100                | N    | 7          | 700              |                                                              |
| 15.18<br>W  | W     | 1637  | Ž                  | zad                | Ŋ    | کہ         | 200              |                                                              |
| 15.18       | ·75   | 1651  | ٦.                 | 1961tt             | 4    | 7          | 200              |                                                              |
| 14+18<br>39 | 30    | 1704  | ?                  | (400               | 7    | 4          | 260              |                                                              |
| Ki          | 3/    | -24   | 7.                 | Secar              | Ŋ    | N          | 760              |                                                              |
| 7)          | #5    | 201   | <b>:</b>           | 50                 | الر  | , <b>.</b> | 760              |                                                              |

| Daily Log                |                     |           |
|--------------------------|---------------------|-----------|
| Date: $\frac{9/35/94}{}$ | Job Name or Number: | 9409195PS |
| Time                     |                     |           |
| 2800 AFRIVE              | ·.                  |           |
| 1200 OparT               |                     |           |
|                          |                     |           |
| MUST WART                | UNTIL MONDAY        | Ken       |
| FURTHER                  | SAMPLE LOCATION     |           |
| - Anni                   | DEPUT HIS LE        | ess       |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     |           |
|                          |                     | /         |
| ASUN FORBER              | 9/25/9              | <u> </u>  |
| Completed By (print)     | Date /              | /         |
|                          |                     |           |

Dat \_\_\_\_\_

Page 1 of 3

Site Name: TOELE SOUTH APER

TEG Project #: 9409/9CM

Site Location: TOEZLE S. UTAH

Operators: <u>JASON</u>

Client: SAIC

Strataprobe #: SP 8

Field Reps: Tall Tall

Weather: grad Zun

| Sample ID   | Depth      | Time | Soil Type | Soil gas flow/draw       | Odor | New tubing | SG Volume purged | Remarks         |
|-------------|------------|------|-----------|--------------------------|------|------------|------------------|-----------------|
| 19-19       | 4          | 2230 | 7         | goed                     | N)   | $\sim$     | 100              |                 |
| 19-19       | 5          | œi   | 7         | iced                     | N    | N          | 130              |                 |
| 19-19       | 10         | 0851 | 7         | 900                      |      | 4          | 100              |                 |
| 19.19       | 15         | 0902 | 7         | 71651                    | 7    | 4          | 200              |                 |
| 19-19       | 20         | 0910 | ſ,        | 6000                     | N    | لہ         | જા               |                 |
| 19-19       | 75         | 0935 | ?         | 2000                     | N    | N          | 7.Ce             | produce in the  |
| 12/5        | 30         | 6557 | 7         | 400                      | 7    | ~          | 260              |                 |
| 19-19<br>34 | 34         | 1011 | 7         | 7,0,                     | N    | \/         | 260              | powelle in 1,10 |
| 15.19       | <b>4</b> 0 | 1000 |           | مان چي <sub>ر</sub><br>و | Z    | `(         | 260              |                 |
| 19-26       | 5          | 157  |           | *                        | /}   | 11         | **               |                 |

Strataprobe
Soil Gas Sampling Field Lug

svfldlog.xls

Site Name: TOELE SOUTH AREA

TEG Project #: 9 409/9CM

Site Location: TOELE S. UTAH

Operators: JASON

Client: SAIC

Strataprobe #: SP 8

Field Reps: \_\_\_\_\_\_

Weather: S. W

| Sample ID    | Depth | Time | Soil Type | Soil gas flow/draw | Odor                        | New tubing | SG Volume purged | Remarks |
|--------------|-------|------|-----------|--------------------|-----------------------------|------------|------------------|---------|
| 19.76        | 10    | 1103 | ۲.        | 9000               | 2                           | 7          | 100              |         |
| 9.76         | 15    | 1120 | ٠,        | gas                | 7                           | J          | (90              |         |
| 19.76<br>15D | 15    | 1(30 | j.        | Scal               | 7                           | لہ         | (0)              |         |
| 28           | 20    | 1149 | 7         | god                | N                           | N          | 700              |         |
| 1926         | 25    | 1159 | ۲,        | gcac               | 7                           | 4          | 200              |         |
| 19-27        | 5     | 1730 | 7         | 5000               | <i>,</i> \( \structure{\pi} | N          | /0O              |         |
| 19-77        | 10    | 1238 | 7         | gcec               | ٠ کا                        | لہ         | (2)              |         |
| 4.57         | 15    | 1256 | ?         | scud'              | $\lambda$                   | N          | 700              |         |
| 70           | श्व   | 1307 | ?.        | gee!               | 2                           | لم         | ابر<br>د         |         |
| 14, 27       | 7.    | 77   | 7         | , - !              | N                           | \          | (C)              |         |

Date <u>3/35</u>

Site Name: TOELE SOUTH AREA TEG Project #: 9409/9CM

Site Location: TOELLE S., UTAH Operators: JASON

Client: SAIC Strataprobe #: SPS

Field Reps: SOAD Weather:

| Sample ID   | Depth | Time | Soil Type | Soil gas flow/draw | Odor | New tubing | SG Volume purged | Remarks |
|-------------|-------|------|-----------|--------------------|------|------------|------------------|---------|
| 38.0        | 7.0   | 44   | ۲ ,       | good               | Ŋ    | 7)         | 250              |         |
| 33-65<br>70 | 20    | 143% | 7         | 9000               | 2    | $\sim$     | 200              |         |
| 33-16       | To    | 155  | ۶.        | ر مو               | 7    | 7          | 500              |         |
|             |       |      |           |                    |      |            |                  |         |
|             |       |      |           |                    |      |            |                  | ·       |
|             | -     |      |           |                    |      |            |                  |         |
|             |       |      |           |                    |      |            |                  |         |
|             |       |      |           |                    |      |            |                  |         |
|             |       |      |           |                    |      |            |                  |         |
|             |       |      |           |                    |      |            |                  | ·       |

| Daily Log |                 |                      |               |
|-----------|-----------------|----------------------|---------------|
| Date:     | 9/26/94         | Job Name or Number:_ | 4409195P8     |
| Time      | ( ' )           |                      |               |
| 0816      | ARRIVE<br>RESTA |                      |               |
| 0845      | STANT           |                      |               |
| 1/00      | Dine -          | NO FULTAGE           | squples TO Be |
| 920       | TAxen           |                      |               |
| 1/30      | OFF STRE        |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 |                      |               |
|           |                 | ,                    |               |
|           | TOUN FERBER     | 9/26                 | /44           |
| Completed | By (print)      | Date                 | /             |
|           |                 |                      |               |

| Site Na     | me: <u>Tor</u> | 15      | ( )           | <u>~</u>           |            | TEG Project #: |                  |            |  |  |
|-------------|----------------|---------|---------------|--------------------|------------|----------------|------------------|------------|--|--|
| Site Loc    | ation:/        | Tovelc  | (1-)          | 14                 | را سورت    | Operators:     |                  |            |  |  |
| Client:_    | 50             | 16      |               |                    |            | Strataprobe #: |                  |            |  |  |
| Field Re    | eps:           | رم مع و | ce_           | <del></del>        |            | Weathe         | r: <u>; e</u> ,  | - ( - 11 N |  |  |
| Sample ID   | Depth          | Time    | Soil Type     | Soil gas flow/draw | Odor       | New tubing     | SG Volume purged | Remarks    |  |  |
| 19-28       | 5              | 0851    | 7             | ear                | رم         | N              | 100              |            |  |  |
| P7-28       | 5              | 000     | 7             | cac                | ال بر      | کەر            | 100              |            |  |  |
| 10          | 10             | 0915    | <b>&gt;</b> , | t7C = 57           | 2          | N              | 100              |            |  |  |
| 19-28<br>15 | 15             | 0925    | · >           | GOEP               | \ <u>\</u> | N              | 200              |            |  |  |
| 19-28<br>20 | 24             | 0936    | ١٠.           | Sow                | 2          | N              | 505              |            |  |  |
| 19.78<br>75 | 25             | 0949    | P .           | gocal              | 2          | N              | 200              |            |  |  |
| 19-78<br>30 | 30             | 1001    | <i>C</i> •    | such               | V          | Y              | 260              |            |  |  |
| 19-78<br>35 | 35             | 1014    | . ( .         | good!              | 7          | <i>\lambda</i> | 260              |            |  |  |
| 19-28<br>40 | 40             | (0%     | ſ,            | cica               | N          | لہ             | 2 <i>6</i> C     |            |  |  |
|             |                |         |               |                    |            |                |                  |            |  |  |